

I'll be covering 12 short topics today. Most of these come up regularly as support questions and some of them have been entries on our blog over the last couple of years. I'll start with how to find a non-specific modification.

Sometimes, we need to search for modifications that are non-specific or of unknown specificity. You might be tempted to create a modification such as FuzzyMod (ACDEFGHIKLMNPQRSTVWY). If you try to use such a modification in a search, Mascot will almost certainly run out of memory or address space and crash because of the combinatorial explosion.

Consider the numbers. If modification of any residue is possible then, for a single 20 residue peptide from the database, there are 2^20 possible modified peptides that need to be tested to see if they fit to the precursor mass and, if they do, matched to the MS/MS spectrum. This increases the search space by a factor of 1 million. Even if the code can handle this in a reasonable amount of memory, you can't escape from the fact that any match needs to be 1 million times better than if you were searching without the modification to be statistically significant.

If multiple modifications per peptide are expected, this is a very difficult problem for database search, and is probably intractable. A truly non-specific modification is going to produce a population of peptides which won't all be modified in the same way. Many arrangements of the modification will be represented, and sets of these will be isobaric. Thus, each MS/MS spectrum will contain fragments from a mixture of precursors and so will be of poor quality in terms of database matching.

However, if the modification is relatively rare, and you don't expect more than one instance on most peptides, such as a cross-linker being used to interrogate protein-protein interactions, the problem is much simpler:

Add the modification to your local Mascot server for all possible specificities, but don't group them. This creates up to 20 separate new modifications.

Make sure the MS/MS data set includes some unmodified peptides so that you get a hit to the protein. If necessary, spike in some unmodified protein.

Perform an automatic error-tolerant search.

If the spectra are good, the highest scoring match for a peptide will have the modification at the correct location. If the spectra are not so good, you may get matches with similar scores for a range of possible locations. Note that the error-tolerant search will not give matches to peptides that carry the new modification with different specificities; a peptide with two FuzzyMod (H) would be OK but you wouldn't match a peptide with FuzzyMod (H) and FuzzyMod (M).

For Waters MS^e data, use PLGS to convert to MGF and search with Mascot

DIA-Umpire is a new, open source Java program that enables untargeted peptide and protein identification and quantitation using DIA data. A detailed description can be found in this Nature Methods paper. The DIA-Umpire signal extraction module deconvolutes the DIA data to create a conventional DDA-type peak list, suitable for database searching. The software is intended to be applicable to DIA from any instrument, although the examples in the publication are mostly Swath on an AB Sciex 5600, with one example of data from a Q Exactive Plus.

The choice of mzXML as the input format is slightly unfortunate, as this became obsolete in 2008, when HUPO PSI released mzML. The suggested workflow for AB Sciex data is to convert Wiff to mzML using the AB Sciex MS Data Converter then convert mzML to mzXML using msconvert.

The output from DIA-Umpire is three MGF files for each input file: Tier 1 (*_Q1.mgf) representing pseudo MS/MS spectra that are linked to high quality MS1 precursor features (3 or more detected isotope peaks), tier 2 (*_Q2.mgf) representing lower abundance precursors (2 detected isotope peaks only), and tier 3 (*_Q3.mgf) representing precursors detected in MS2 scans.

How do	search DLA rer dela import option: a función (million	data?	
Penet	Precision (12 By product Precision (12 By product Precision Intervaly Oriclates (084) (7 Use compression (054) (9 Fiber options Fiber options	Anne 7 or letter XTI COA Umpire data Import Option Anney / 45 Jan Ro (C-Nogan Rear OtA Unpire COA, Unper, 5) Personters Bis (C-Nogan Rear OtA Unpire COA, Unper, 5) Personters Bis (C-Nogan Rear OtA Unpire, se Januar)	
http://www.matrixs	 cience.com/blog/se	arching-dia-data-especia	lly-swath.html
MASCOT : How	v do I do that?	© 2015 Matrix Science	MATRIX SCIENCE

The file conversion requirements make automation tricky. Mascot Daemon 2.5 supports both AB Sciex MS Data Converter and msconvert, but not as multiple steps in a file conversion chain. It's a bit tricky to set up, but you can create four separate real-time monitor tasks:

- The first one to converts Wiff to mzML. You will need to get it to monitor a folder somewhere on your system and search for *.wiff files. These are suitable parameters for the AB SCIEX MS Data Converter
- Next, create a second real-time monitor task to convert mzML to mzXML using the ProteoWizard mzConvert import filter. These are suitable parameters for the import filter. You will need to monitor the directory where the first task, for example: C:\ProgramData\Matrix Science\Mascot Daemon\MGF\20 Wiff to mzML
- The third task will create MGF files from the mzXML using DIA-Umpire. Once again it needs to monitor the folder from the previous task, and these are the relevant options for DIA-Umpire
- A final task is required to search each of the MGFs. In this case you need to look for the *.mgf files in the second task because DIA-Umpire doesn't allow the output directory for the MGFs to be specified. , so there has to be an additional task to pick up the MGFs from the same directory as the mzXML.

You need to set up some search parameters for the first three tasks that will only search a small database. The first task will succeed with the search, but for the second two, you should just ignore the errors in the Daemon event log from the searches which are bound to fail.

You can download an updated <u>daemon_di_utils.xml</u>, containing a definition for DIA-Umpire and with the mzXML output option added to the msconvert definition. Note that there is an error in the DIA-Umpire instructions: when using msconvert to transfrom mzML to mzXML, do not specify peak picking because this causes msconvert to throw an exception.

Download links at: http://www.matrixscience.com/blog/searching-dia-data-especially-swath.html

Example data files described in the text and supplemental information can be downloaded from SourceForge and more are available from Pride.

I'll show the results from just one data set, the example

LongSwath_UPS1_lug_rep1.mzXML using the parameters (ups.se_params) suggested in the paper. This yielded three MGF files. If you remember from the earlier slide, the tier 1 mgf represents the pseudo MS/MS spectra that are linked to high quality MS1 precursor features, the tier 2 represents lower abundance precursors, and tier 3 represents precursors detected in MS2 scans. All three peak lists were searched against human proteins in SwissProt.

Counts are at 1% FDR and Unique PepSeq is the count of peptide sequences not found in either of the other tiers. For this particular analysis, almost nothing is found in tier 2. An area-proportional Venn diagram (eulerAPE) for counts of distinct peptide sequences at 1% FDR looks like this.

The DIA-Umpire documentation states that "These spectra are written to separate files, because they must be searched separately against a protein database as a consequence of differences in FDR estimates for these varying quality data." Using Mascot, the same search parameters can be used for all three, the score distributions for tier 1 and 3 are very similar, and the significance threshold for 1% FDR is essentially the same for tier 1 and 3, so no particular need for separate searches. If this picture applies generally, you might choose to search only the tier 1 peak list or, for best coverage, merge the tier 1 and 3 peak lists.

This is quite a common support question.

If you are taking fractions from the same sample, we can't think of any reason why you wouldn't want to combine all the data. Peptides from the same protein are likely to be found in different fractions. It's obviously possible to search all the data independently and then use Excel to combine the results, but this would be incredibly tedious.

Using our standard software, there are at least two ways to do this. The first uses Mascot Daemon. It's simply a case of using the check box on the task editor tab.

You have to use "Start now" or "Start at" with a list of files. Obviously can't use "Real time monitor" because it would have no way of knowing when it has all the files available and so when to submit the search.

This works by producing a peak list for all of the files and then concatenating all the peak lists into one big MGF file. One possible problem with this approach is that if the resulting peak list is bigger than 4Gb and if your Mascot Server runs on Windows, then you will hit upload limit size for the IIS Web server on Windows. One option is to use Apache on Windows or Linux.

The second option is to use Mascot Distiller. In Distiller, choose a new Multi File project, and then select the required files. If you deselect the "Memory efficient" checkbox, then all the peak lists will be concatenated together in a similar way to using Mascot Daemon. If you leave it checked, and then "Process and Search", a search will be run for each raw data file and you won't have any of the limitations with files more than 4Gb.

After all the searches have completed, Distiller will combine the results files and the proteins tab will show the result of the combined searches. On the Searches tab, you can view the individual search results for each fraction, or you can click on the "Master Search" and view the combined search in a browser:

How de fractio	o I combine res ns / raw files?	ults from mu	ltiple
Caching re	sults collection set (24 files)		
Please wait while the f	le is being processed. Please do not		
 close the browse refresh this page navigate away fi 	r, , or om this page;		
otherwise the process	vill have to be restarted.		
Depending on file size stage may take several RAM to fit the files in	available memory, CPU and disk performance, and a number of ou minutes, and up to an hour. In the worst case, the server will not hav o memory, and caching may take several hours to complete.	er factors, this e enough free	
Resfiles	Door 100% down		
Common cache	Dose		
Percolation	Joons (already done or not needed)		
Onen results file	100% done Reading file_(1 s elansed)		
	100% dose		
10% door	Loading 2st 20 peptides (query 2145400) (77 s elapsed)		
MASCOT :	How do I do that?	© 2015 Matrix Science	MATRIX SCIENCE

Creating a cache file for the results collection may take a little while, but this only needs to be done once.

You then end up with a report that is the same as if the MGF files had all been concatenated.

The only limitations are that not all export formats are available, and you have to use the Protein Family Summary, although it wouldn't be advisable to use either of the other summary reports for a large data set anyway.

As instruments get faster, and databases get larger, your Mascot searches will obviously take longer and eventually you will need to deal with this. It may well be that you can just change some of the search parameters. For example, you may be able to use a different database, or restrict searches by taxonomy. Or, your standard protocol may include modifications that you rarely see and you could consider dropping these. It's also worth checking that the peptide tolerance you are using is appropriate. The peptide tolerance affects the search speed, but reducing the fragment tolerance will have negligible effect.

Assuming it's still not fast enough, you need to calculate, or at least estimate how much faster you need the searches to be. Obviously, 'A lot faster ' is not very scientific!

It goes without saying that it's worth trying to plan for the next year or two, although this can be very hard to judge.

The first thing to do is to get some details about your current server hardware. If you are anything like me, there's a good chance you can't remember how old your system is. I thought my laptop was about 2 years old, but looked it up to find that's it coming up to 5 years old. If it's 3 or more years old, it's almost certainly worth replacing it.

Regardless of age, it's worth checking what processor(s) you have. In Windows, from the Control Panel, System you should be able to find the model and speed.

In Linux, you can: cat /proc/cpuinfo

You can see that my laptop has an M620 running at 2.67GHz.

Lookup the value on the cpubenchmark web site to get a Single Thread Rating. For my laptop, I found this information:

My colleagues at Matrix Science told me I was daft to run Mascot Server on a laptop, so I looked on the Lenovo website for a workstation and found one with the option of either 1 or 2 E5-2697 processors. I looked this up and it has a Single Thread Rating of nearly double that of my laptop, so I would expect Mascot to run twice as fast.

How do Mascot S	I increase for the server?	the throughput	of my
i7-M620		E5-2697	
- Performance		- Performance	
# of Cores	2	# of Cores	14
# of Threads	4	# of Threads	28
MASCOT : Ho	w do I do that?	© 2015 Matrix Science	MATRIX SCIENCE

It's not just about the speed of a single core, it's the number of cores. The place not to look, is Windows Task manager. From here, it looks like I have 4 cores. For Intel processors, definitive information can be found on ark.intel.com, and if I look for my processor, it says there are just 2 cores, but 4 threads. The system that I'm looking at buying has 14 cores and 28 threads per processor.

We license by the 'cpu' and each license is good for 4 cores. If your processors have hyperthreading, we don't count these pseudo cores as they don't improve performance much.

The ~ 2 in each case is from the single thread benchmark where we saw that the new processors had a value of 2080 compared with my system which has a score of just 1026.

I'm not making full use of my 1 cpu license when I'm running Mascot Server on my laptop, because it only has 2 cores. If I run Mascot on this new server, it will use 4 cores, so the searches will run a total of about 4 times faster.

If that's not good enough, I could upgrade my license to a 3 cpu license and run searches 12 times faster.

The maximum performance improvement I could get using this new server is with a 7 cpu license, where I would use all 28 cores.

If that's still not fast enough, you'll probably need to consider setting up a cluster. This can be as simple as just adding another couple of PCs connected by a LAN, or you could purchase a blade center.

This may sound like I'm teaching grandmother to suck eggs, but it's surprising that some people jump straight into using a complex technique without testing with a standard sample. We also recommend that you start with a single file – if it's a simple standard, you should be able to use a single fraction. Open the file in the Distiller application and choose suitable processing options to produce the peak list. When you first open the file, you should be presented with suitable options from the list. If there's nothing suitable for your instrument, we will happily help create a new processing options file.

Next, submit the search from Distiller choosing the appropriate quantitation method. You must select a quantitation method, so don't just chose the relevant modifications. Once the search is complete, chose "Quantitate All" from the menu. Since you know what the results should be, validate the protein identification and the quantitation results. You may need to modify these. If you have trouble at this stage, we may ask you to send the .rov file and the raw file and we can help.

How do l quantita	automate s tion of SILA	searching and C data?	
) Mascot Daemon Elle Edit Help Status Event Log Task Editor Parameter Editor Conner Task SLAC	New Run	
	Parameter set C:>PogramData'M_StacK6R6 par Data Sile list Drag and drop data Siles into the area Below or click on Add	Data import filter Mascot Datiler Options Schedule Schedule Start now C Start at C Real-time monitor C Follow-up Search prionty	-
	COUNTRY INC. HEREBOOL ANY INC. ANY INSTITUTE ANY INC. ANY INSTITUTE ANY INC. ANY INSTITUTE ANY INC. ANY INSTITUTE ANY I	Actions Auto-exportExternal processes Follow-up required I Discard results I Repeat at intervals of 1 v days v IF Pass data toNone - v	
MASCOT : How	v do I do that?	© 2015 Matrix Science	MATRIX

Once you have all your parameters nailed down, you can use Mascot Daemon to automate the process for many files. I've assumed here that you are now running multiple fractions.

You can either choose a real time monitor task, or you can use a "Start now" task and select the files.

Using the parameter editor tab, create a parameter set for the search parameters, and then make sure you select it here.

Use the Mascot Distiller import filter, and then choose the options:

How o quant	do I automate searching and itation of SILAC data?
[Mascot Distiller data import options
	Data File Format Default for unknown scan type Centroided Fremo Xcalibur Profile / continuum
	Mascot Distiller Processing Options C-VProgram RL_vny_perfected_peak_picking_options.opt Edit Save As
	Multi-Sample Files C Marge all samples into single search G Separate search for each sample MGF G Separate search for each sample
	Scan Range (multi-scan files) Start End Units Menutes Visit Save
	Output PMF Masses as C miz
	Quantitate Protein Hits G All C None C Range from to
	Reset OK Cancel
MASCOT	: How do I do that? © 2015 Matrix Science MATRIX SCIENCE

For the Distiller import options, choose your options file that you prepared earlier when using Distiller.

Make sure that you save the Distiller Project

Select Quantitate All Protein hits.

duantitati	OD OT				
	011 01 3	ILAC da	ita:		
Once it's al	I done	vou nee	d to c	ombine	the
once it s ut	r done,	you need		ombine	circ
results in M	ascot Di	stiller:			
			Select Mascot C	Jutiler file	
New Multi File project			- Children	Name *	Date modified
			23	STORE STORE STRAC HELA LAN	16/04/2015 16:35
Sample name # Status File	name Path	Add File(s)	Recent Places	20150103_SLAC_HELA_2.rev	16/04/2015 16:35
		Demous		120150103 SEAC HELA J.HV	16/04/2015 16/35
		KONVE	Desktop	120150103 SLAC HELA SAW	16/04/2015 16:35
		Add Project	144	\$120150103_SLAC_HELA.6.rov	16/04/2015 16:35
			Libraries	\$120150103 SLAC HELA 8.00V	16/04/2015 16:35
				\$120150103_SLAC_HELA_9.rev	16/04/2015 16:35
			100	20190103_SLAC_HELA_10.rev	16/04/2015 16:15
			Computer		
			· •	Regare '20150103_SLAC_HELA_1'	1.ev***20150103 •
		3	Network	Fies of type: Mascot Datiler ("rov)	•
Memory efficient (Not compatible with label	free)				- Contraction of Contraction
Contraction of the comparable montable		Cancel	Second Second		
Distiller Project File			Processing Option		
		Browse	(Suid	Value	
Description Continue					

If these are fractions from a single sample, you'll want to combine them. Choose "New Multi File Project" from the file menu and then "Add Project". Select all the relevant Mascot Distiller Project files.

Next, from the Analysis menu, choose to Quantitate all hits, and the results will be produced pretty quickly.

You need the following: Mascot Server Mascot Distiller Mascot Distiller Search Toolbox Mascot Distiller Quantitation Toolbox Mascot Distiller Daemon Toolbox

Time to optimise methods for your data.

A fairly common question we get, is how to search data from metabolically labelled samples, for example 15N data. The problem is that all of the residues from the organisms grown with heavy isotopes will have a different mass. You could of course redefine all the residue masses in Mascot Server, but a much better way is to use a quantitation method, even if you aren't going to use Mascot Distiller to quantify the results.

The names of the quantitation methods should be obvious, and for a Metabolic labelled sample, you will notice that the name has the [MD] at the end, indicating that the quantitation would need to be done in Mascot Distiller.

It is worth looking at the method in the method editor:

Namo												
Name 15N Metabo	lic [MD]		Der	crin	tion 15	N Metaboli	00% Jabel	lling				
Name 15N Hecabo	ine (inite)		Des	scrip	0011 12	in necaboli	, 9976 label	miy				
Method Protocol	Component	Rep	ort Ratio	Ir	ntegrati	on Quality	Outliers	Norm	alisation	XML	1	
Component												
Components:	heavy •	•		Ne	ew	Copy	Delete					
Property	Value									Actio	n	
Component	heavy											
Modification groups								(Add Mod	dificatio	n Group	
Satellite group								0	Add Sat	ellite G	roup	
Isotopes	Old:	N	•		New:	15N -	Delet	te	Add isot	ope		
Corrections	Type:	impu	rity	•	Shift:							
	Element:	15N	•			99.0	Delet	te				
	Type:	impu	rity	•	Shift:							
	Element:	N	•			1.0	Delet	te	Add con	rection		
	crement.					1.0	Delet		Add com	ectori		
Save changes	Cancel											

For 15N, you will see that there are two components and the heavy one is defined with the isotope 15N rather than standard N. You will also see that we can define the impurity. Here, we have a 99% labelling efficiency.

Mascot effectively performs the search twice, with two different sets of masses. In the search engine, the heavy and light matches are shown using whatever labels you defined in the quantitation editor

The search engine doesn't use the incorporation rates from the quantitation editor – those are just used for the Distiller quantitation. Therefore, with a lower incorporation rate, the masses will be slightly inaccurate. A 98% rate should just about be OK, but you will need to increase the tolerances, possibly to +/-2 or 3 Da and it's likely that the peak picking won't work well. It's normally worth the extra effort to get the highest incorporation rate possible

And if you load and process the data through Distiller, that will of course calculate quantitation information from the MS1 scans.

Mascot Distiller with the search toolbox includes a novel Denovo algorithm that can be used when you have high quality spectra, but are unable to get a significant match from a database search.

It can readily denovo single spectra, or all spectra in the raw data file, but a common requirement is to be able to search all spectra with no significant match from Mascot Server.

To de novo sequence a complete peak list collection, or the peak lists in the currently displayed TIC range, use the context menu obtained by right-clicking the root (world) node of the peak lists tree.

The most efficient way to de novo only those spectra that failed to give decent matches in the Mascot search is to switch to the proteins tree, click on Format Options, and choose to load the unassigned queries.

Use the context menu obtained by right-clicking the root node or unassigned node to de novo just the unassigned queries.

It is normally best to update the databases you are searching every month or two. This is less critical for some species like Human, because there are fewer updates to human proteins in the databases. Of course, you can do this manually, but it's obviously preferable to automate the process. In versions of Mascot prior to version 2.4, it took a little bit of setting up using the db_update.pl script. For version 2.4 and later, it's really very easy using Database Manager. I'll show an example using SwissProt which is one of the predefined databases:

Just click on the Edit schedule button:

SwissProt is only updated about once per month but you'll notice that this has been set for a quiet time at 3:30am on Sunday. Database Manager keeps a record of the time, date and size of the last download, so it only downloads a file if it's newer than the one on the Mascot Server and therefore it's not an issue to check for a new version every week.

н	ow do l automate database updates?
	Marcet Database Manager x +
	★ @ 1400-dmc/mascet/= cai/db memoramesinhouse@db.new.new.mc = C Q Search
	Outabase Manager Database Manager Database (a) Parse rules (13) Schedided Bradies (a) Running tabase (b) Settings Amino acid (protein database) Nucleic acid (DNA database) Settings Nucleic acid (DNA database) Settings Settings Amino acid (protein database) Nucleic acid (DNA database) Settings Settings Outabase files will be located in the directory inhouse in the sequence directory. The new directory will be created in the directory will be created in the directory inhouse in the sequence directory. The new directory will be created if it does not already exist. Subbase files can be actomatically (2) Database files can be actomatically domloaded from the Internet or capied from the Mascot Server hard disk. In the serve will nee to mail will the files have been directory and compiles the configuration. You can filles unto source file on Mascot Server hard disk. CivitanceningFasta/Labouse_proteins. fasta FASTA file URL or path to source file on Mascot Server hard disk. CivitanceningFasta/Labouse_proteins. fasta
	Delete original FASTA file after copying (2)
	Version file URL or path to source file on Mascot Server hard disk (optional) 🕐
	Delete original version file after copying (2)
	Reference file URL or path to source file on Mascot Server hard disk (outional) (1)
MASC	COT : How do I do that? © 2015 Matrix Science MATRIX SCIENCE

For any database that's not predefined, it's possible to add a path to a file to download from the local hard disk or by using a URL. Once this has been defined, you can set up a schedule in exactly the same way as for SwissProt.

We are often asked what is safe to delete or move on the Mascot Server and many customers note that their data directory has become huge.

Much of the space is taken up by the results files. All of the programs on the Mascot Server that need to read a results file will un-compress a file if necessary. This means that it's a good idea to compress all the old results files. So, if you want to go back and look at an old results file that has been compressed, it will just take a bit longer, but it will still be available.

Mascot uses cache files to speed up report loading and navigation and by default these files are saved in the 'cache' subdirectory under the data directory. If you delete these files, then Mascot will re-create them when you look at a report, so it's totally safe to delete all of them. However, if you routinely go back and look at files for several weeks after searching them, it makes sense to just delete ones that are older than one month.

You can obviously do both of these manually, but it makes more sense to automate this process.

There's a script that will do all of this for you, and we'll probably include it with Mascot 2.6

You can download it from here. Remember that we'll put these slides on our public web site, so no need to make extensive notes.

Next, you need to edit the bottom of your mascot.dat and you'll need to do this using a text editor like notepad. You should find a line like this one in green which you shouldn't alter. Insert a new line below. You can copy and paste the line from this presentation, but you will need to change this part in italics to be the same as the line above if you didn't install Mascot or Perl in the standard places, or if you are running on Linux.

The "0 2 * * 0" says when the script should run. The parameters are the same as for the Linux cron utility and are described in chapter 6 of the Mascot Installation and Setup manual. However, the

- '0' means 0 minutes past the hour
- '2' means 2 o'clock in the morning
- '*' and '*' means any day of the month and any month of the year
- '0' means the first day of the week, that is Sunday.

One word of warning is that you should only use this script with Mascot 2.4 and later. The cron section of mascot.dat wasn't implemented in earlier versions.

You may have noticed that there are a couple of parameters for the script. If you don't want to compress your .dat files, but you do want to clear the cache remove the - compressdat

There are some other parameters. What do we mean by 'old'. You can specify this by adding –minage=100, so only files older than 100 days will be deleted or compressed. The default is 100, so if you are happy with that value, there's no need to add the parameter

When you first run this script, it may take a very long time to run if there are lots of files to compress. Assuming that you set this running at 2 am on Sunday morning, you probably don't want it to still be running on Monday when you come into work. So, you can specify how long it should run before stopping. The default is 12 hours, which is 43,200 seconds.

You can also set the location and logging level for this, but there's probably no reason to change the defaults.

How do I automaticall results?	y export	searc	h
	Choose first	C PMF G MSMS	
Schedule	Choose second	malder@ML	
C Start at 13 April 2015-15:12 C Real-time monitor C Follow-up Search priority 0 Actions Auto-export External processes	Format Significance threated pc Target FDR (servertage) litra score out-off Max, number of hits Peckets scoring Include same as proteins Include sub-set proteins Ormap proteins into tendine Require totic red Unigene index Use Percolator Peelered teacromy	1 * Weekly 1 * Modeling 1 * * 1 * * 1 * *	C Handagy
under the MGF folder	Search information	ude search information F Heatine F Decoy F Modification datas F Search providers F Foreit analysis F Residue market F Guantidate header F	
ASCOT : How do I do that?	© 2015 Matrix Sc	ience	MATRI SCIEN

We had this as a tip in one of our talks at the 2013 ASMS user meeting. Back then, there were 7 slides describing how to do this as it was quite complex. Because of that, we added an easy way to do it in Mascot Daemon 2.5, but you may have missed it. On the task editor page, there's a new button for "Auto-export". Just click this button and you can select the export file format that you want and also what you want exported. There are different options for PMF and MS/MS options, so make sure that you choose the type of search that you are doing first. The different options then depend on the output format that you have chosen.

The files are saved in the MGF folder – normally in a subdirectory under: *C:\ProgramData\Matrix Science\Mascot Daemon\MGF*

Creating a list of confidentially identified proteins is very simple.

Select the Decoy checkbox in the search form when submitting the search. Assuming there are more than 300 ms-ms spectra, and assuming you haven't changed any defaults, the Protein Family Summary will display by default. If it doesn't, switch to that report

Next, switch to the Report Builder tab.

Then, expand the decoy search section and set the peptide FDR to 1%

IPR02000	0 SW	issProt Mouse.	- A 1.7								
ð	mati	rikscience.com/	cgi/maiter_results_2.pl%le=	F981139.dat_sele	ted.fdr=1:,30	gthreshold=0.0	05251;pr.showwrep	ortboilder#0:3ele	ned James 🔻 🕻	Q. 500	* ****
nce DB	8	Most Visited	TWiki 🛄 Bugzilla 🗌 EC		Aascot 🗌 Bo	ogong 📦 Sugi	ar L. DB Status L	public Drin	Clock @	HSBC T	AYE 🐔 Bacula 🗌 iPRG2008 🧧 Insight 🥔 CVS 🏵 dingo
tein I	Fa	mily Su	mmary								
		, su	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
Filter		Significan	ce threshold p<	0.00525 Max	. number (of families	AUTO	ef[help]			
		Ions scor	e or expect cut-off	0 Der	drograms	cut at	0				
		Show Per	colator scores								
		Preferred	taxonomy	All entries				•			
- abov - abov y resul	ma ve i ve i ilts	atches dentity thre dentity or h are available 86) Rep	e in sthe decoy report port Builder	n target in D 1498 1834 T.	ecoy <u>FE</u> 16 1.0 18 0.94	DR 17% 8% Adju:	st.to 1%*•				<u>§ permah</u>
tein Iumns ters: "	hi s: s wu	ts (297 Standard (1 Im. of uniq Num. D • Fam	proteins) 12 out of 16) use sequences" > 1 of unique sequences ily	> • 1	-	< •	Remove 🗐				
otein olumns Iters: "	hi s: s wu	its (297 Standard (1 mm. of uniq Num. D • Fam	proteins) 12 out of 16) 10 sequences" > 1 of unique sequences 10	> • 1	.)	< •	Remove 🗐 Update				
otein olumns iters: "	hi s: s 'Nu ANI	ts (297 standard (: nm. of uniq Num. D • Fam	proteins) 12 out of 16) sue sequences" > 1 of unique sequences ily	> • 1		٤	Remove				
ters: "	hi s: S "NU ANI CS	ts (297 Standard () Im. of uniq Num. D • Fam	proteins) 12 out of 16) two sequences" > 1 of unique sequences ily Accession	> • 1	Mass	< •	Remove	Sequences	Seq(sig)	cmPA1	Description
tein lumns ters: " ort as (<u>nily</u> 1	hi s: s "NU ANI CS\ M	ts (297 Standard () Im. of uniq Num. D • Fam V DB CRAP	proteins) 12 out of 16) 12 out of 16) 12 out of 16) 13 of unique sequences" > 1 of unique sequences iby Accession cf1::sp]TR11_BOVI	> • 1 Score N 1165	Mass 28266	< • Matches 72	Remove Update Match(sig) 44	Sequences 8	Seq(sig) 6	emPA1 2.26	Description sp[TRY1_BOVIN]
tein lumns ters: " ort as (<u>nily</u> 1	hi s: S "NU ANI CSV M 1 1	ts (297 standard (1 m. of uniq Num. D • Fam V DB cRAP SwissProt	proteins) L2 out of 16) use sequences" > 1 of unique sequences ily Accession ef1::spTRY1_BOVI ef2:::GRP78_MOUSE	 > • 1 Score N 1165 868 868 869 	Mass 28266 81404	< • Matches 72 82	Remove Update Match(sig) 44 41	Sequences 8 35	Seq(sig) 6 17	emPAI 2.26 1.74	Description sp[TRY1_BOVIN] 78 kDa glucose-regulated protein OS=Mus musculus GN=
tein lumns ters: " ort as (<u>mily</u> 1	hi s: S "NU ANI CS\ M 1 1 2	ts (297 standard (1) m. of uniq Num. D • Fam V DB CRAP SwissProt SwissProt	Accession cf::us:spice.cs" > 1 of unique sequences" > 1 of unique sequences dy Accession cf::us:pTRY1_BOVI cf::us:pTRY1_BOVISE cf::us:pTRY1_BOVISE cf::us:pTRY1_BOVISE cf::us:pTRY1_BOVISE	> • 1 Score N 1165 868 203 202	Mass 28266 81404 78937	< • Matches 72 82 53	Remove Update	Sequences 8 35 24	Seq(sig) 6 17 5	emPA1 2.26 1.74 0.36	Description sp[TRY1_BOVIN 78 kDa glucose-regulated protein OS=Mus musculus GN= Heat shock cognate 71 kDa protein OS=Mus musculus GN
ters: "	hi s: S "NU ANI CS\ M 1 1 2 3	ts (297 standard () mm. of uniq Num. D • Fam V DB cRAP SwissProt SwissProt	Accession d1:splTk1_80VL d2:splTk1_80VL d2:splTk1_80VL d2:splTk1_80VL d2:splTk1_80VL	> - 1 Score N 1165 868 203 102	Mass 28266 81404 78937 78552	< - Matches 72 82 53 30 0	Remove Update Update Match(sig) 44 41 11 6	Sequences 8 35 24 13	Seq(sig) 6 17 5 3	cmPA1 2.26 1.74 0.36 0.20	Description sp[TRY1_BOVIN] 78 kDa glucose-regulated protein OS=Mus musculus GN= Heat shock cognate 71 kDa protein OS=Mus musculus GN= Heat shock 70 kDa protein 1-like OS=Mus musculus GN=
otein slumns ters: " nort as (mily 1	hi s: S "Nu ANI CS\ M 1 1 2 3 1	ts (297 standard () mm. of uniq Num. D • Fam V DB CRAP SwissProt SwissProt SwissProt	Accession ef1::sp1T8Y1_80VL ef2::sp1T8Y1_80VL ef2::sp1T8Y1_80VL ef2::sp1T8Y1_80VL ef2::sp1T8Y1_80VL ef2::sp1T8Y1_80VL ef2::sp1T8Y1_80VL	N 1 Score N 1165 868 203 102 850	Mass 28266 81404 78937 78552 16817	< - Matches 72 82 53 30 54	Remove Update Update Match(sig) 44 41 11 6 33	Sequences 8 35 24 13 7	Seq(sig) 6 17 5 3 4	emPAI 2.26 1.74 0.36 0.20 2.08	Description sp[TRY1_B0VIN] 78 kDa glucose-regulated protein OS=Mus musculus GN= Heat shock cognate 71 kDa protein OS=Mus musculus GN heat shock 70 kDa protein 1-ke oS=Mus musculus GN= Cytochrome b5 OS=Mus musculus GN=CybSa PE=1 SV=2
otein Islumns ters: " Nort as (milty	hi s: s "Nu ANI CSV M 1 1 2 3 1 1	ts (297 istandard () m. of uniq Num. D • Fam CRAP SwissProt SwissProt SwissProt SwissProt	Accession d'.::csplTRY1_BOVI d':::splTRY1_BOVI d'::splTRY1_BOVI	> - 1 Score N 1165 868 203 102 850 711	Mass 28266 81404 78937 78552 16817 61419	< • Matches 72 82 53 300 54 134	Remove Update Match(sig) 44 41 11 6 33 47	Sequences 8 35 24 13 7 23	Seq(sig) 6 17 5 3 4 11	emPA1 2.26 1.74 0.36 0.20 2.08 1.56	Description sp[TRY1_BOVIN] 78 kDa glucose-regulated protein OS=Mus musculus GN= Heat shock cognate 71 kDa protein OS=Mus musculus GN= Cytochrome b5 OS=Mus musculus GN=CyD2c29 Cytochrome P450 2C29 OS=Mus musculus GN=CyD2c29
otein olumns trers: " 	hi s: s 7NU ANI CSV M 1 1 1 2 3 1 1 2	ts (297 itandard () itan. of uniq Num. D • Fam CRAP SwissProt SwissProt SwissProt SwissProt SwissProt	Accession d1:sout of 16) use sequences" > 1 of unique sequences d1:sout of 16) use sequences d2:sout of 16)	Score N 1165 203 102 650 711 313	Mass 28266 81404 78937 78552 16817 61419 60887	< - Matchess 72 82 53 30 54 134 57	Remove Update Update Match(sig) 44 41 11 6 33 47 19	Sequences 8 24 13 7 23 19	Seq(sig) 6 17 5 3 4 11 7 7	emPA1 2.26 1.74 0.36 0.20 2.08 1.56 0.74	Description sp[TRY1_BOVIN] 78 kDa glucose-regulated protein OS=Mus musculus GN= Heat shock cognate 71 kDa protein OS=Mus musculus GN= kets shock 70 kDa protein 1-like OS=Mus musculus GN= Cytochrome b5 OS=Mus musculus GN=Cyb2sP E=1 SV= Cytochrome H450 2C29 OS=Mus musculus GN=Cyp2c54
otein olumns tters: " 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	hi s: s wu ANI CSV M 1 1 2 3 1 1 2 3 1 1 2 3	ts (297 itandard (1 m. of uniq Num. D - Fam V DB CRAP SwissProt SwissProt SwissProt SwissProt SwissProt SwissProt SwissProt	Accession ef1::sp]TRY1_80VI ef2::sp]TRY1_80VI	> 1 Score NI 1165 868 203 102 850 711 313 254	Mass 28266 81404 78937 78552 16817 61419 60887 61128	< - Matches 72 62 53 30 54 134 55	Remove Update Match(sig) Match(sig) 41 41 11 6 33 47 19 18	Sequences 8 35 24 13 7 7 23 19 19	Seq(sig) 6 17 5 3 4 11 11 8	cmPA1 2.26 1.74 0.36 0.20 2.08 1.56 0.74 0.88	Description SepTRY1_BOVIN 78 kDa glucose-regulated protein OS=Mus musculus GN= Heat shock cognate 71 kDa protein OS=Mus musculus GN Heat shock 70 kDa protein 1-kek OS=Mus musculus GN=CyD2C39 Cytochrome P450 22C4 OZ39 OS=Mus musculus GN=CyD2C34 Cytochrome P450 2C54 OS=Mus musculus GN=CyD2C34 Cytochrome P450 2C50 OS=Mus musculus GN=CyD2C50
otein olumns tters: " 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	hi s: S "NU ANI CS\ M 1 1 2 3 1 1 2 3 4	ts (297 itandard (: itan. of uniq Num. D • Fam CRAP SwissProt SwissProt SwissProt SwissProt SwissProt SwissProt SwissProt SwissProt	Accession d'.::resquences" > 1 of unique sequences ay Accession d'.::sp)TRY1_BOVI	Score NI 1165 8686 203 102 850 711 313 254 154	Mass 28266 81404 78937 78552 16817 61419 60877 61128 60590	< • Matches 72 82 53 30 54 134 57 55 43	Remove Update Match(sig) 44 41 11 6 33 47 19 18 13	Sequences 8 355 24 13 7 23 19 19 19 17	Seq(sig) 6 17 5 3 4 11 11 7 8 6	cmPA1 2.26 1.74 0.36 0.20 2.08 1.56 0.74 0.88 0.61	Description Sp[TRY1_BOVIN] 78 kDa glucose-regulated protein OS=Mus musculus GN= Heat shock roopaste 71 kDa protein OS=Mus musculus GN= Cytochrome b5 0S=Mus musculus GN=CyD258 PE=1 SV= Cytochrome P450 2C29 OS=Mus musculus GN=CyD2C49 Cytochrome P450 2C20 SC4 OS=Mus musculus GN=CyD2C54 Cytochrome P450 2C30 S=Mus musculus GN=CyD2C54 Cytochrome P450 2C37 OS=Mus musculus GN=CyD2C37
otein Iums ters: " 	hi s: S "NU ANI CS\ M 1 1 2 3 1 1 2 3 4 5	ts (297 standard () mm. of uniq Num. D • Fam V DB CRAP SwissProt SwissProt SwissProt SwissProt SwissProt SwissProt SwissProt SwissProt SwissProt	Accession d':::spTRY1_BOVI d':::spTRY1_BOVI d':::spTRY1_BOVI d':::spTRY1_BOVI d':::spTRY1_BOVI d':::spTRY1_MOUSE	Score N 1165 868 203 102 850 711 313 254 154 142	Mass 28266 81404 78937 78552 16817 61419 60887 61128 60590 60056	 Matchess 72 82 83 30 54 134 57 55 43 62 	Remove Update Match(sig) 44 41 11 6 33 47 19 18 13 10	Sequences 8 35 24 13 7 7 23 19 19 19 17 7 17	Seq(sig) 6 17 5 3 4 111 7 8 6 4	cmPA1 2.26 1.74 0.20 2.08 1.56 0.74 0.88 0.61 0.37	Description sp[TRY1_B0VIN] 78 kDa glucose-regulated protein OS=Mus musculus GN= Heat shock cognate 71 kDa protein OS=Mus musculus GN Heat shock 70 kDa protein 1-like OS=Mus musculus GN= Cytochrome P450 2C29 OS=Mus musculus GN=CyD2C91 Cytochrome P450 2C50 OS=Mus musculus GN=CyD2C50 Cytochrome P450 2C50 OS=Mus musculus GN=CyD2C50 Cytochrome P450 2C37 OS=Mus musculus GN=CyD2C50 Cytochrome P450 2C39 OS=Mus musculus GN=CyD2C50 Cytochrome P450 2C39 OS=Mus musculus GN=CyD2C30
otein Jumns ters: " 7 xxxrt as (mily 1	hi s: s 7NU ANI CSV M 1 1 2 3 1 1 1 2 3 4 5 6	ts (297 itandard (1 itan. of uniq Num. D • Fam CRAP SwissProt SwissProt SwissProt SwissProt SwissProt SwissProt SwissProt SwissProt SwissProt SwissProt	Accession d'inite sequences" > 1 of unique sequences w Accession d'inite d'init d'inite </td <td>Score N 1165 868 203 102 850 711 313 254 154 154 154 154 154</td> <td>Mass 28266 81404 78937 61817 61419 60887 61128 60590 60856 61356</td> <td>< - Matches 72 82 53 30 54 134 55 43 62 58</td> <td>Remove Update Match(sig) Match(sig) 441 41 11 6 6 33 47 19 18 13 10 6</td> <td>Sequences 35 24 13 37 23 19 19 19 19 17 13 3 18</td> <td>Seq(sig) 6 17 3 4 4 11 7 8 6 4 4 2</td> <td>emPAI 2.26 1.74 0.36 0.20 2.08 1.56 0.74 0.88 0.61 0.37 0.17</td> <td>Description Sp[TRY1_B0VIN] 78 K0a glucose-regulated protein OS=Mus musculus GN= Heat shock cognate 71 kDa protein OS=Mus musculus GN= (ytochrome b5 OS=Mus musculus GN=CybSa PE=1 SV=2 Cytochrome P450 2C54 OS=Mus musculus GN=Cyb2c39 Cytochrome P450 2C50 OS=Mus musculus GN=Cyb2c37 Cytochrome P450 2C50 OS=Mus musculus GN=Cyb2c37 Cytochrome P450 2C30 OS=Mus musculus GN=Cyb2c38 Cytochrome P450 2C30 OS=Musculus Cyb2c38 Cytochrome P450 2C30 OS=Musculus Cyb2c38 Cytochrome</td>	Score N 1165 868 203 102 850 711 313 254 154 154 154 154 154	Mass 28266 81404 78937 61817 61419 60887 61128 60590 60856 61356	< - Matches 72 82 53 30 54 134 55 43 62 58	Remove Update Match(sig) Match(sig) 441 41 11 6 6 33 47 19 18 13 10 6	Sequences 35 24 13 37 23 19 19 19 19 17 13 3 18	Seq(sig) 6 17 3 4 4 11 7 8 6 4 4 2	emPAI 2.26 1.74 0.36 0.20 2.08 1.56 0.74 0.88 0.61 0.37 0.17	Description Sp[TRY1_B0VIN] 78 K0a glucose-regulated protein OS=Mus musculus GN= Heat shock cognate 71 kDa protein OS=Mus musculus GN= (ytochrome b5 OS=Mus musculus GN=CybSa PE=1 SV=2 Cytochrome P450 2C54 OS=Mus musculus GN=Cyb2c39 Cytochrome P450 2C50 OS=Mus musculus GN=Cyb2c37 Cytochrome P450 2C50 OS=Mus musculus GN=Cyb2c37 Cytochrome P450 2C30 OS=Mus musculus GN=Cyb2c38 Cytochrome P450 2C30 OS=Musculus Cyb2c38 Cytochrome P450 2C30 OS=Musculus Cyb2c38 Cytochrome
otein Jumns ters: " 	hi s: s 700 ANI CSV M 1 1 2 3 1 1 1 2 3 4 5 6 1	ts (297 itandard () itandard () Num. D = Fam CRAP SwissProt SwissProt SwissProt SwissProt SwissProt SwissProt SwissProt SwissProt SwissProt SwissProt	Accession d'unique sequences" > 1 of unique sequences dy Accession d'1::sp)TRY1_BOVI d'2::sp)TRY1_BOVI d'2::sp)TRY1_BOVI <td>Score N 1165 868 2033 102 850 711 313 254 154 142 83 702</td> <td>Mass 28266 81404 78552 16817 61419 60887 61128 60590 60856 61356 63034</td> <td>< - Matches 82 53 30 54 134 57 55 43 62 58 58</td> <td>Remove Update Match(sig) 44 41 11 6 33 47 19 18 13 10 6 33</td> <td>Sequences 8 35 24 13 7 23 3 19 19 19 19 19 17 13 18 15</td> <td>Seq(sig) 6 177 5 3 4 4 11 7 8 6 4 4 2 2 10</td> <td>cmPA1 2.26 1.74 0.36 0.20 2.08 1.56 0.74 0.88 0.61 0.37 0.17 1.14</td> <td>Description Sp[TRY1_BOVIN] 78 kDa glucose-regulated protein OS=Mus musculus GN= Heat shock cognate 71 kDa protein OS=Mus musculus GN= Cytochrome b5 OS=Mus musculus GN=CyD254 Cytochrome P450 22:90 CS=Mus musculus GN=CyD2254 Cytochrome P450 22:50 OS=Mus musculus GN=CyD2550 Cytochrome P450 22:30 OS=Mus musculus GN=CyD25250 Cytochrome P450 22:30 OS=Mus musculus GN=CyD22:30 Cytochrome P450 22:30 OS=Mus musculus GN=CyD2:32 Cytochrome P450 22:30 OS=Mus musculus GN=CyD2:38 Cytochrome P450 12:30 OS=Mus musculus GN=CyD2:38</td>	Score N 1165 868 2033 102 850 711 313 254 154 142 83 702	Mass 28266 81404 78552 16817 61419 60887 61128 60590 60856 61356 63034	< - Matches 82 53 30 54 134 57 55 43 62 58 58	Remove Update Match(sig) 44 41 11 6 33 47 19 18 13 10 6 33	Sequences 8 35 24 13 7 23 3 19 19 19 19 19 17 13 18 15	Seq(sig) 6 177 5 3 4 4 11 7 8 6 4 4 2 2 10	cmPA1 2.26 1.74 0.36 0.20 2.08 1.56 0.74 0.88 0.61 0.37 0.17 1.14	Description Sp[TRY1_BOVIN] 78 kDa glucose-regulated protein OS=Mus musculus GN= Heat shock cognate 71 kDa protein OS=Mus musculus GN= Cytochrome b5 OS=Mus musculus GN=CyD254 Cytochrome P450 22:90 CS=Mus musculus GN=CyD2254 Cytochrome P450 22:50 OS=Mus musculus GN=CyD2550 Cytochrome P450 22:30 OS=Mus musculus GN=CyD25250 Cytochrome P450 22:30 OS=Mus musculus GN=CyD22:30 Cytochrome P450 22:30 OS=Mus musculus GN=CyD2:32 Cytochrome P450 22:30 OS=Mus musculus GN=CyD2:38 Cytochrome P450 12:30 OS=Mus musculus GN=CyD2:38

Expand the filters section and set 'Num of significant unique sequences' > 1

Optionally, expand the columns section and choose which columns you require and their order

Print the table or export it as CSV

