

We have introduced Mascot Integra at previous ASMS user meetings so I thought that we would cover something different this time.

For those that are not familiar with Mascot Integra it is our solution to proteomics data management and you can find out more about it on our website or see it in action at our booth, number 39, during the conference.

This time I'm going to talk about solving real life problems with Mascot Integra.

What sort of requirements are we going to ask of Mascot Integra?

Firstly I need to track experiment conditions.

Secondly I want to know what happened to my samples three or more months later Thirdly I want to create reports with the information that I'm interested in.

Finally I want to analysis large data sets and filter the identified proteins by different constraints

The need for experiment condition tracking is split in to two camps:

Those that want to load the results into the database as fast as possible and go straight to analysis and reporting

And those that would like to track as many details as possible about the experiment from within the database

We can support both camps and anywhere in-between.

I going to show some examples of minimal and detailed experiments.

First the minimal experiment.

Experiments are modelled by linking together experimental tasks selected from the library

It can be a simple as this:

Start from a sample

Import existing MS or MS/MS peaklists

And perform a Mascot search.

In this experiment we don't capture any additional information, parameters, or conditions about the experiment.

But it allows us to search one or multiple data files quickly and capture the results, and link the search results back to the original sample.

This 2D gel protocol is an example of a more detailed experiment model.

I'm using many more different tasks to model this experiment.

Starting from our samples

we load and run the gels

Followed by staining and imaging

A link to the gel images is attached to the image gel task

Integra can interface with NonLinear Dynamics Progenesis and GE Healthcare DeCyder via xml files. In this case Integra exports an xml file with information about the gels and their images that is imported into Progenesis

The gel images are then processed with Progenesis as per normal.

Once the gel spots have been selected for analysis we export an xml file from Progenesis.

This xml file is then imported back into Integra

and the spot list is processed generating a new gel spot sample for each selected spot.

Then we continue through the experiment reducing and alkylating the proteins before in-gel digestion with trypsin

The samples are then analysed by mass spectrometry

The raw data are processed by Mascot Distiller and Mascot Daemon submits the searches to the Mascot Server.

So, in this example, we will have captured all the experimental parameters and conditions from the processing of the sample to the MS analysis and data processing.

E EXP-0602	00268-967 Digest		-	In-progress	
Data Set	Variant:1 Instance:1	StatusInstrument	LabBook Ref.		
Parameter	Type R	ep Entered Value	Unit		
Protocol Id	Standard	1			
Digestion buffe	r Standard :	1 25mM Ambic			
Digestion buffe	r Standard :	1 50			
Buffer volume	Standard				
units	standard :		c		
Incubation Time	e Standard	1 3/	C		
Incubation time	Standard :				
unit	Stanuaru .	nours			
Storage type	Standard .				
Chen huffer une	d Standard :				
Stop buffer use	d Standard .	·			
volume	Standard	1			
Stop buffer unit	ts Standard	1			
Data Set		Status Instrument	LabBook Ref.		
Mascot Enzyme	/ariant:1 Instance:1		Q		
Parameter	Type R	ep Entered Value	Unit		
Enzyme id	Standard :	1 Trypsin 💽			
used used	° Standard	2			
Enzyme volume units	⁹ Standard	1 ul 💽			
Data Set		StatusInstrument	LabBook Ref.		
Sample volume u	used Variant:1 Instanc	e:1	Q		
Parameter	Type R	ep Entered Value	Unit		
Sample volume	Standard	1 10			
Sample volume	Standard				
units	Stanuaru .	I Ima			

Most tasks have a data entry page. Here is a view of the data entry page for an enzyme digest task.

The yellow boxes indicate values that are required to perform the task.

The other boxes are optional, but the more data that is entered, the more scope there will be for data mining of the experimental results.

Single tasks through to complete experiment plans can be preconfigured and saved as templates.

So, for example, if you perform all your digestions at 37C for 4 hours then these values can be predefined so that you don't have to enter them each time you run the task.

Some values are selected from a controlled, user defined list. For this task, it's the digestion and stop buffers and digestion robot or instrument.

Here is a third example of a detailed model of a protein mixture separated on a 1D gel.

The sample loaded and separated on a 1D gel

The gel is stained and the protein bands are excised

Followed by in gel digestion

LCMSMS

Peak picking and mascot database searching.

Again we have captured all the experimental parameters and conditions from the processing of the sample to the MS analysis and data processing

Rather than trying to run the instrumentation directly from Mascot Integra we have implemented a samplesheet exchange system. During the relevant step of running an experiment, you produce an Excel or CSV samplesheet from within the Integra system which you can then load into the Instrument datasystem. Nearly all instrument datasystems will import one or more of the supported formats (Excel, CSV and tab delineated).

This system is highly flexible. You can design your own samplesheets for use within the system. So if Thermo add a new column to the Xcalibur samplesheet then you can add this yourself into the system – you don't have to wait for us to add the column. Likewise if you bought a spotting robot which we had not designed a samplesheet for then you could simply add a new design into the system for it.

We also integrate with a number of Gel Packages. This is carried out using XML exchange between Mascot Integra and the Gel package software. We currently support the GE Healthcare DeCyder software and the NonLinear Dynamics family of 2D Gel analysis software and will be adding support for the Bio-Rad PDQuest package in the next release.

Now on to the second requirement of sample tracking.

One of the key advantages of tracking your experiments and results through Mascot Integra is that at each step of the experiment the relationships between samples are tracked and stored, readily accessible, in the database.

These relationships can be 1-1 (i.e. doing a simple digest to produce a child sample), 1-many (i.e. splitting a sample into multiple aliquots), many-1 (i.e. creating a single mixture from multiple starting samples) or many-many (i.e. creating multiple mixtures from multiple starting samples).

Because we have tracked all of these relationships, then answering the question 'where did this search result come from' 12 months down the line is now trivial.

🚈 Protein hit list - Mic	rosoft Internet Exp	plorer								<u>-0×</u>		
Eile Edit View F	avorites <u>T</u> ools <u>H</u> e	elp										
🔾 - 🕑 - 💌	🗟 🏠 🔎	☆ 🤗	🖉 • 🍣	🍃 🗷 • 🧾 -	-25							
{MATRIX}	MASCO	TInt	oars		ntage				Help SiteMap LogOff Database: integrademo User:	Patricke		
(SCIENCE)			cyrc	A Camal		sterrer onte 🔿 🕅 Ma	eest Coanch 🙃 Ma	ent Data Mir				
Operations	Protein hit li	st	xperime	ints of Sampi		struments V Ma	scut_search • Pla	coc_bata_m	ing o bundes o			
- Return History			<u>с</u>	ide SearchBar	Select of	Story						
Bulletins	Search Bar	2 8 ×	1 - 100	of 102 (page [1 • of 2)	<u>_</u>				-		
10 Bulletins	Group by Colur Mascot Search I	IC + OK	🖃 Masc	cot Search Id: <u>n</u>	nss-010220	005-00004						
Help Protoin bit list	Search within t	the		2	Accession	n Description		Hit Rank	Mascot Protein Score			
help	Iu/Accession/	OK		ph-01022005- 000068	SPBC106.1	14c possibly involv organization	ed in actin cytoskeletal	8	36			
	Search by a Qu	uery:	🖃 Mase	cot Search Id: n	nss-020220	005-00001						
	By approved py By approved po	eptide tide	пш	2	Accession	n <u>Description</u>		<u>Hit</u> Rank▲	Mascot Protein Score			
•	Please supply the	e following		000606	IP1000101	41 subunit	o polymerase epsilon p1	600	202			
	additional inform click Search Nov	nation and		000000		Tax, Id=9606 Trai	BIT DASO1			•		
	Proteins with m	🊈 http://ko	:8080/6	nh-02022005- topaz/rc?comman	nd=page&pag	ge=SampleTracker&c	hild=mph-02022005-000	0606&childsdc=	- Microsoft Internet Explorer		1	
Portions copyright @	subsequence if	Ele Edit	jew F,	avorites <u>T</u> ools <u>H</u>	telp							
2005 Matrix Science Ltd. Portions convicts C	%TPLK%] 😋 • 🤅	- 💌	😰 🏠 🔎) 🧙 🥝	😒 - 😓 📼 🔸	🔜 🚳					
2005 LabVantage Solutions, Inc.	Search No	Secten	XI	MASC	o TInt	teara 🧧	Lablantage			Dat	tabase: integrademo User: Pati	ricke 🔺
All Rights Reserved.		Home	• Pro	ojects 🗢 Stu	idies ♥ f	Experiments •	Samples 🛛 Instrum	ents 🗢 Ma	scot_Search ♥ Mascot_Da	sta_Mining 오	Utilities 오	
E Done		Bulletins		Sample hist		Return						
		E Help		mph-02022 0000606;								
		Sample	history									
				S-050201-0000	1 - K562 ery	rthroleukemia cells - S	Sample					
				<u>S-050202-00</u>	0001 - K562 d	cell extract - Sample						
				<u>S-050202</u>	-00002 - Red	duced and Alkylated K	562 cells - Sample					
				<u>S-0502</u>	<u>102-00003</u> - T	Tryptic digest of K562	cells - Sample					
				<u>S-05</u>	50202-00004	- Purified tryptic dige	st of K562 cells - Sampl	9				
				<u>s</u>	-050202-000	111 - Purified tryptic d	igest of K562 cells 21.0n	nin - Sample				
					<u>S-050202-0</u>	00030 - Purified trypti	c digest of K562 cells 21	0min - Sample				
					msf-020	22005-0000144 - Rav	r mass-spec datafile : //l	<oala data<="" test="" th=""><th>/abrf/A8_007/A8_007_08_X01_</th><th>05_11_4_2002/A</th><th>8_007_08_X01_J5.RAW -</th><th></th></oala>	/abrf/A8_007/A8_007_08_X01_	05_11_4_2002/A	8_007_08_X01_J5.RAW -	
		Portions copy 2005 Matrix	/right @ Science	ms_filesample								
		Portions copy 2005 LabVar	vright @ htage		msf-0	02022005-0000214 - F	rocessed mass-spec dat	afile : //Koala/1	est Data/abrf/DAT_MGF/_a8.m	gf - ms_filesamp	ple	
	COT	Solutions, In: All Rights Re:	c. served.		ms	ss-02022005-00001 -	- ms_srch					
MAS	CUI					mph-02022005-00	00606 - IPI00010141	Tax_Id=9606	DNA polymerase epsilon p1	7 subunit - ms	_proteinhit	•
		E Done									Sucal intrane	st //.

Here I've done a query against our Mascot Integra system and retrieved a list of all Mascot protein hits which have a peptide match that contains the subsequence TPLK. Then to see were any one of those protein hits originates from all I have to do is select the protein hit and click on the History button.

We can see that all the intermediate steps from the protein hit back to the original cell sample.

Once that I have samples and data in the system I would like to perform some analysis and create some reports.

Mascot Integra uses Excel for custom reporting.

For more complex data mining, involving multiple SQL statements and further data processing, the Integra database can be mined using custom scripts or programs.

Pretty much any programming language can be used, for example Perl, Java, Visual Basic or C++. You could even use Visual Basic macros in an Excel sheet.

I'm going to show how an excel report is designed and three examples from the currently available report set.

Then I'm going to show some examples of what you might want to do with more advanced reporting.

Excel o - choos	uery se the viev	VS MSEdliQueryWizard - Microsoft Internet Explorer		4
		a Lab/antage	Database: integr	i
Home O Pro	Studies Styperment Excel Query definition I 1 Select .day file 2 Enter ODBC details 3 Select views in Query 4 Select columns 5 Where clauses 6 Choose values 7 Edit Query 9 Enter Query name 10 Confirm	Its © Samples © Instruments © Maccot izard Select the views to include in the query: Instruments © Instruments © instruments of the views to be present in the query: Instruments of the query: Selected view soci_bast maccot_pepting maccot_pepting maccot_pepting rementaskic_ontents memory maccot_pepting rime_dtainem immentaskic immentaskic rime_dtainem immentaskic immentaskic rime_dtainem immentaskic immentaskic rime_dtainem immentaskic immentaskic rime_dtainem_ immentaskic im	Search O Mascot_Data_Mining O 1 uery Ja_details A iment	
Pertions copyright @ 2005 Matri Science built 2005 LabVantage Solutions, I.c., All Rights Reserved.	Cancel K Back	icot_protein_hits	V Local infranet	

The first excel report is on the properties of the peptides identified from a MuDPIT run.

All the available views are listed in the left panel

from those I select the views related to peptides identified in a search.

The relationships between the different views and the column names for each view are documented in the online help.

Next we select the columns to be reported

The available columns from our chosen views are displayed in the left panel.

And the selected columns are shown in the right panel.

You can order the columns as you prefer.

	Exce - seal and s	l que rch b sort b	ry y experimen y peptide ma	it ic asc	l ot score		
80/top	paz/rc?command=page	ett page =MSE dit(QueryWizard - Microsoft Internet Explo	orer			
avorite:	s <u>T</u> ools <u>H</u> elp						.
M		teara	• Lablantage			Help SiteM Database: i	4ap LogOff integra User: richardj
Projec	ts 🔍 Studies 🔍	Experiments	Samples ♥ Instruments ♥	Mascol	: Search 🔗 Mascot Dat	a Mining 오 Utili	ties 오
Ex	cel Ouery defini	ition wizar	Add in clauses to limit and ord	er the d	ata returned from the d	atabase	
1 2 3 4	Select .dqy file Enter ODBC details Select views in Query Select columns	Specify claus Specify a value Please not th Add new cl	es to limit the data returned by the of 7 /f you wish the clause value to be d at you cannot specify runtime param ause	query, o letermined neters fo	r to control the order of th at runtime. r 'LIKE' clauses.	ne query	
5	Where clauses	Clause type	Column name		Operator	Value	
7	Edit Ouerv	Where Y	results_experiment_v.experimentid	*	Equals 💌	?	Remove Clause
8	Test Query	Order By 🚩	mascot_peptide_details_v.mascot_score	e 🚩	Descending 🚩	2	Remove Clause
9 10	Enter Query name Confirm						
	Cancel	Back 🕨 Ne	xt				
							Sucal intranet
×	ASCOT	: Prob	em solving with Mascot	Integr	a © 2006 Matrix S	cience	{MATRIX \ {SCIENCE}

Next we specify clauses to limit the peptides to an experiment ID which will be defined at run time

And a second clause to sort the peptides by mascot score.

Mascot Integra builds the SQL statement which can then be edited (if required), tested and saved.

Build an Excel template

Microsoft Excel - Experimental Peptide report.xls	
: 편) Elle Edit View Insert Format Iools Data Window Help Adobe PDF	Type a question for help 🔍 🗕 🗗 🗙
i 🗅 🧉 🔒 🔒 🔄 🐧 🖤 👯 Χ 🖙 🖎 • 🛷 🕫 - 🔍 - 😒 Σ • ½↓ Χ↓ 🛄 🦓 100% 🕞 @ 💂 i Arial	- 10 - B I U 💡 抗 📩
🛅 🔄 🖄 🖾 👁 🍇 🗇 🏷 🖉 😼 🕼 🖓 🕸 Reply with Changes End Review 📕 🥵 😭 🖍 🕴 🛠 🧌 🖲	
C1 👻 🏂 MASCOT_SCORE	
	DE_PROBABILITY MASCOT_SEARCH_ID_QUERY_
	DE_PROBABILITY MASCOT_SEARCH_ID QUERT_A
3	
Microsoft Excel - Experimental Peptide report.xls	
:펜] Ele Edit View Insert Format Iools Data Window Help Adobe PDF	Type a question for help 🔍 💶 🗗 🗙
] D 💣 🚽 👌 🕘 🐧 🖤 🛝 χ 📭 🖎 • 🛷 ∅ - ♡ - 🧶 Σ • ☆↓ Χ↓ 🛄 🛷 100% - Θ 🖕 Arial	• 10 • 🖪 Z 🖳 🚆 📆 🐔 💂
🛅 🔄 🖄 🖉 🥱 🏹 📅 🏷 🖓 🖏 😥 🕅 Reply with Changes End Review 📘 🥵 🖀 🖍 📍 🕺 🦓	
C1 - A MASCOT_SCORE	
V W X Y Z AAABACACABAFACAHAJAJAKALANANACAPIAC AR	AS AT AU 🔥
RESIDUE_AFTER Peptide Length A C D E F G H I K L M N P Q R S T V W Y P	eptide length Missed Count Charge Count Peptid ⊻
1 RESIDUE_AFTER Peptide Length A C D E F G H I K L M N P Q R S T V W Y	eptide length Missed Count Charge Count Peptid
4	0 0 0
5	
MASCOT : Problem solving with Mascot Integra © 2006 Ma	trix Science

Next I open excel and build a template for the results.

I specify where the data will be placed within the worksheet and can program additional calculations on the data and design graphs.

Build an Excel template	
다 Microsoft Excel - Experimental Peptide report.xis IS DE CR. Yew Yoort Fromt Took Onet Window Deb Adde FCF The agention for her # X ID 같더 제 2 나라 가지 않는 것이 ~	
Peptide Langth 1 1 3	
MASCOT : Problem solving with Mascot Integra © 2006 Matrix Science	(MATRIX) (SCIENCE)

I can add additional graphs and calculations to the template at a later date as long as the query stays the same.

The excel sheet is then saved on the Mascot Integra server and added to the Excel report templates. Other users can then run the same report on their own searches/samples without having to know anything about the underlying SQL.

I had previously processed a data from large ICAT analysis of the rat brain proteome that had been separated by strong cation ion exchange followed by LCMS/MS on a LTQ-FT.

The data analysis was performed automatically with Mascot Distiller and Mascot Server.

The search results were then available for reporting from Mascot Integra.

MAS	SCOT Inted		C Help SiteMap LogOff Database: integra User: ric
jects 오	Studies 🗢 Expe	riments 오 Samples	♥ Instruments ♥ Mascot_Search ♥ Mascot_Data_Mining ♥ Utilities ♥
Excel R Templa	eport Ites List	Return Add	Edit Telete +Download report
ms_XL	SReport 'xls-00020' was	successfully deleted.	
	ID		Description
0	<u>xis-00001</u>		All significant protein hits from an experiment (only valid for PMF experiments)
0	<u>xls-00005</u>		All approved protein hits for an experiment
0	<u>×ls-00006</u>		Mascot searches containing specified accession
0	<u>×ls-00007</u>		Project Details
0	<u>×ls-00008</u>		Mascot searches within a specified study
0	<u>×ls-00009</u>		Protein hits from an experiment task with an evalue below X
0	<u>×ls-00010</u>		Gel and gelspot details
0	<u>×ls-00012</u>		Protein hit details for a specified Mascot search
0	<u>xls-00013</u>		Protein hit details by id
0	<u>×ls-00014</u>		Protein hits from gel lane in 1D GelCMS experiment
0	<u>xls-00015</u>		Comparison report: No accession or shared sig peptide match in Control search
0	<u>×ls-00016</u>		Comparison report: No accession and no sig peptide has match in Control
0	xls-00017		Comparison report: No accession or peptide match in the Control
۲	<u>xls-00018</u>		Experment peptide report MS/MS
0	<u>xls-00019</u>		Mass vs Rentention Time vs Intensity sparse array
			Second Intranet

Lets export all the peptides above the homology score that have been identified by ms/ms from the experiment.

First we select the report template

Then the mascot search id

And finally save the report as an Excel document to the hard drive. The report can then be opened and edited in Excel.

D 08 1		vat Iools Data ∭indow	Help Adobe PDF							Type a question for help 🔹 🕳 🖥
	9 6 6 6 7 7 W	×=2 × - ≪ +2 - 0	·- 🧶 Σ - 21 ΧΙΙ)	🔒 45 100% 🔹 😥 📑 Arial	• 10 • B Z U ■	●●図 99~~26公 读读	🖽 • 💁 • 🚣 • 📕 j	111		
8827		· 2 백일 ()의 / YV Reply with Ch	anges Egd Review	ay an an i t' va 🖓 😡 🖥						
1 MAS	COT SCORE IDENTITY	D THRESHOLD HOMOLOG	E Y THRESHOLD PEPTI	F G DE PROBABILITY MASCOT SEARCH ID	H I OUERY NO PEPTIDE BJ	J K NK OBSERVED MASS OBSERVED (HARGE MREXP	MRCALC	N DEL TA	0 INTENSITY QUERY TITLE
2	77.61	35	30	3.35499E-06 mss-26042006-00002	1948	1 1505.8228	1 1504.815524	1504.800598	0.014926	1278757.6 1147: Scan 2420 (rt+
3	77.5	36	30	3.63569E-06 mss-28042006-00001	1716	1 1505.8213	1 1504.814024	1504.800598	0.013426	972567.38 1112: Scan 2455 (rt=
4	77.5	35	23	3.39562E-06 mss-27042006-00003 E 2006EE-06 mss-28042006-00003	1608	1 1496.7925	1 1495.785224	1495.778401	0.014823	1157134.1 1320: Sum of 2 scan 2617927 1149: Sum of 2 scan
3	39.06	35	27	0.020349674 mss-26042006-00002	1232	1 1074.6136	1 1073.606324	1073.598999	0.007325	1250443.9 1219: Scan 2654 (rt=
7	38.84	29	19	0.005753683 mss-27042006-00002	1247	1 1320.7841	1 1319.776824	1319.768173	0.008651	486876 1508: Scan 2810 (rt=
3	38.83	36	26	0.028527074 mss-25042006-00194	1305	1 1160.5887	1 1159.581424	1159.578085	0.005359	133481.3 1474: Scan 2782 (rt=
0	38.32	33	26	0.01535556 miss-28042005-00002 0.027709921 miss-28042006-00001	/ 30	1 1198.6342	1 1197 626924	330.530594	0.00596	24000.00 040: Scan 1931 (rt=1 255998.41 1080: Scan 2408 (rt=
1	38.01	35	16	0.0300279 mss-27042006-00003	1152	1 1198.634	1 1197.626724	1197.617569	0.009155	147439.75 1312: Scan 2448 (rt=
2	37.95	36	25	0.03907109 mss-28042006-00001	1341	1 1302.6917	1 1301.684424	1301.676117	0.006307	4224050.8 979: Sum of 2 scans
3	37.83	36	20	0.040618962 mss-28042006-00002	1503	1 1302.6931	1 1301.695824	1301.676117	0.009707	4902933.6 1012: Sum of 2 scan
5	37.72	36	20	0.041202731 mss-28042008-00003 0.041290568 mss-27042006-00003	1289	1 1302,6956	1 1301.6664124	1301.676117	0.01210/	430447 38 1198: Scan 2263 (rtm
6	37.28	35	26	0.031605175 mss-28042006-00003	1339	1 1169.636	1 1168.628724	1168.620865	0.007859	249888.83 1245: Scan 2460 (rt=
7	37.16	35	31	0.033259671 mss-26042006-00001	1130	1 1169.6349	1 1168.627624	1168.620965	0.006759	427353.84 1057: Scan 2378 (rt=
8	35.51	32	29	0.035173419 mee 27042006-00004	1300	1 1117.4974	1 1116.490124	1116.486938	0.003186	134100.05 /12: Scan 1815 (rt=1 995379.99 1575: Scan 2930 (rt=
5	35.47	36	23	0.03517.5415 mss-27.042005-00001	1363	1 1160 5933	1 1159 599024	1159 578085	0.009959	173876 55 1203 Scan 2628 (rt=
1	34.94	35	25	0.060325957 mss-28042006-00003	1395	1 1198.6343	1 1197.627024	1197.617569	0.009455	1049574.6 1197: Scan 2384 (rt=
2	34.83	36	27	0.078135147 mss-28042006-00001	1117	1 1160.6058	1 1159.598524	1159.590668	0.007856	504521.66 1060: Scan 2382 (rt=
3	33.91	35	23	0.070335018 mss-27042006-00003 0.06006121 mss-26042006-00003	1307	1 1311.7228	1 1310.715524	1310.708314	0.00921	382044.66 1157, Scan 2262 (ti- 4169055.6 1845; Sum of 2 scan
5	33.73	33	26	0.05195981 mss-27042006-00002	1232	1 1311.754	1 1310.746724	1310.737976	0.006748	1130411.6 1509: Sum of 2 scan
6	32.96	32	15	0.040491264 mss-26042006-00002	1149	1 1112.6693	1 1111.662024	1111.651031	0.010993	7807493.3 1653: Sum of 2 scan
7	32.86	27	0	0.016097572 mss-28042006-00003	1809	1 1415.6173	1 1414.610024	1414.603424	0.0066	241827.73 853: Scan 1844 (rt=1
9	32.43	34	20	0.030322199 mss-2/042006-00003 0.020664664 mas-26042006-00003	1004	1 1114.6339	1 1113.626624	1113.621562	0.005042	391562.63 1260: Scan 2367 (ft 435766.22 1517: Scan 2872 (da
0	32.23	34	27	0.091168007 mss-28042006-00003	998	1 1023.5321	1 1022.524824	1022.521866	0.002958	1412950.9 929: Scan 1958 (rt=2
11	32.17	37	16	0.15665932 mss-26042006-00003	1818	1 1418.719	1 1417.711724	1417.698303	0.013421	985756.5 1181: Scan 2360 (rt=
2	32.05	27	16	0.019647647 mss-28042006-00002	1743	1 1415.6168	1 1414.609524	1414.603424	0.0061	412119.44 728: Scan 1763 (rt=1 1054000.6 1007; Same 3404 (da
14	31.97	34	25	0.096252636 mss-28042005-00002	951	1 1023 5332	1 1022 525924	1022.521866	0.004058	801377 63 803: Scan 1878 (rt=1
15	31.95	35	26	0.115780996 mss-27042006-00003	1177	1 1213.623	1 1212.615724	1212.610718	0.005006	93201.297 1071: Scan 2048 (rt=
6	31.95	26	0	0.013339707 mss-25042006-00195	249	1 767.32185	1 766.314574	766.316681	-0.002107	8731.6504 855: Scan 1592 (rt=1
17	31.16	30	18	0.189906238 mss-28042006-00001	1041	1 1418.717	1 1417.7097.24	1417.698303	0.011421	4/5053.41 550: Scan 2204 (it=2 139335.33 716; Scan 1838 (it=1
9	30.47	32	19	0.075653247 mss-25042006-00194	1253	1 1132.5289	1 1131.521624	1131.519623	0.002001	123498.46 1318: Scan 2531 (rt=
0	30.18	30	15	0.059914569 mss-25042006-00194	995	2 976.44817	1 975.440894	975.440964	-0.00007	86081.5 1112: Scan 2171 (rt+
1	30.18	30	15	0.059914569 mss-25042006-00194	995	1 976.44817	1 975.440894	975.440964	-0.00007	96081.5 1112: Scan 2171 (rt=
3	29.48	36	21	0.2571701 mss-28042006-00003 0.150005553 mss-28042006-00001	1020	1 1243 606	1 1315./12224	1242 596095	0.017/24	1140122.0 1141: Scan 2296 (rt= 115000.21.717: Scan 1839 (rt=1
4	29.05	35	29	0.205469362 mss-28042006-00002	1064	1 1074.6126	1 1073.605324	1073.598999	0.006325	11294114 1225: Sum of 2 scar
5	28.78	35	24	0.215073065 mss-25042006-00194	1175	1 1074.6084	1 1073.601124	1073.598999	0.002125	405039.97 1495: Scan 2816 (rt=
6	27.68	32	14	0.130425147 mss-28042006-00004	1293	1 1112.6694	1 1111.662124	1111.651031	0.011093	459439.94 1633: Scan 3306 (rt=
6	27.76	26	21	0.03810495 mss-2/042006-00002 0.318843797 mss.28042006.00001	231	1 /6/.31962	1 /06.312544	1276 684906	-0.004137	3402.1768 803: Scan 1568 (it=) 4442719.6 1198: Sum of 2 coor
19	27.63	35	27	0.301590172 mss-28042006-00002	787	1 959.50093	1 958.493654	958.49057	0.003064	528349 773: Scan 1834 (rt=1
0	27.59	35	24	0.32702424 mss-28042006-00002	1315	1 1198.6344	1 1197.627124	1197.617569	0.009555	1441974.1 1008: Scan 2200 (rt=
1	27.43	36	25	0.410409244 mss-26042006-00002	705	1 930.51357	1 929.506294	929.500397	0.005897	828709.94 839: Scan 1930 (rt=1
кън edv	\Sheet1 / Chart1 / O	bserved Mass vs Delta colour	/ Mascot Score vs No F	aglions / Pep Len vs No Fragsions / Obse	rved Mass vs Delta 🔏 Calcu	ated Mass w C				

That 5 minutes of work designing a query produced a table with information on all the peptides identified in an experiment. In this case data on 9257 peptides.

Most of you will be familiar with Excel and already have enough knowledge to generate sophisticated calculations and graphs.

Here are some of the calculations and graphs that I built.

Looking at the observed mass vs delta error graph there seemed to be multiple populations probably relating to the charge state.

I sorted the data by charge state and re-plotted the graph with each charge state as a different series.

And you can see that the three populations are indeed loosely related to charge state.

It was easy to build a missed cleavage histogram.

Next I calculated the amino acid frequency across all the peptides.

As this was an ICAT experiment the frequencies are going to be different compared to a complete proteome.

Therefore I generated the theoretical AA frequencies for all the tryptic Cysteine containing peptides and added them to the plot.

And we can see a number of differences between what was expected and what was measured.

Of particular interest was the under representation of Tryptophan.

I ran a number of error tolerant searches to see if I could identify more Tryptophan containing peptides with a consistent modification for example oxidation but the results have so far been inconclusive.

The second example is an overview plot of the mass and retention time of all the peptides analyzed by MS/MS from a single MuDPIT fraction.

There were 2838 ms/ms queries generated in the analysis of the fraction.

Four SQL queries have been combined on to one excel sheet to generate the four series shown in the plot.

The queries with a significant Mascot score are shown in blue.

The queries with a Mascot score greater than homology but less than the significant cut off are shown in purple

The queries with an insignificant match are shown in yellow

While the queries that did not generate a match are shown in cyan.

As you can see the majority of identifications eluted in the 40 to 80 minute period.

And the third example is a comparison between searching the IPI database and Human genome DNA database

We used the A8 Dataset from Katheryn Resing, and processed the raw data using Mascot Distiller to produce a dataset with 38608 queries. We then searched this against the IPI Human and Human Genome databases, and created a custom reports to identify all peptide matches from the Human genome search above the homology threshold with no equivalent sequence match (whether above the homology threshold or not) in the IPI Human search. By doing this we produce a list of peptides unique to the human genome search which we can use to look for novel peptide matches, possible sequencing errors, SNPs and other polymorphisms

Microsoft Excel - ASMS HG unique pept	ides (no evidence in control).xls	Read-Only]			<u>_8×</u>
🛞 File Edit View Insert Format I	ools <u>D</u> ata <u>R</u> oboPDF <u>W</u> indow	Help			Type a question for help 🔍 🗕 🗗 🗙
Arial • 10 • 18 Z 1	U = = = B 9%,	18:18 谭谭 🖂 - 💩 - 🛆 -	· . • • • • • • • • • • • • • • • • • •	• E = E = % ?	P . 🖿 🖬 🖻 .
12 2 2 2 2 2 2 2 2 2 2 2	Reply with Changes End Review				
E2 🔹 🏂 341: Sum o	of 2 scans in range 765 (rt=4363.	71) to 768 (rt=4379.11)			
E F	G	ні	JK	L	
1 QUERY TITLE OBSERVE	D_MASS OBSERVED_CHARG	INTENSITY MISSED_CLEAVE	S MASCOT_SCORE PEPTIDE_SEQUENCE	READABLE_VARMODS	BLAST
2 341: Sum of 2 scans in 1 7	00.05703	2 19899276	0 69.58 ELEEIVQPLISK		http://www.ncbi.nlm.nih.gov/blast/l
3 289: Scan 1339 (rt=550. 7	/10.61938	2 202404	0 63.05 NAVEEYVYEMR	Oxidation (M)	http://www.ncbi.nlm.nih.gov/blast/l
4 220: Sum of 2 scans in i	719.7218	2 2324639	1 49.49 IKWGDAGAEYVVK		http://www.ncbi.nlm.nih.gov/blast/l
5 325: Sum of 3 scans in i	737.4399	2 6374620	0 86.32 QEAIQDLWQWR		http://www.ncbi.nlm.nih.gov/blast/l
6 138: Scan 642 (rt=1927. 7	750.67315	2 9816316	0 74.43 WLHNEDQMAVEK		http://www.ncbi.nlm.nih.gow/blast/l
7 227: Scan 846 (rt=2836. 7	98.26491	2 2429994	1 68.59 YWMDPEGEMKPGR		http://www.ncbi.nlm.nih.gov/blast/l
8 247: Sum of 2 scans in i B	316.74939	2 1451900	1 71.18 QISEEPTKNMVAIR	Oxidation (M)	http://www.ncbi.nlm.nih.gov/blast/l
9 45/: Sum of 2 scans in i b	340.61787	2 18411266	1 102.95 UMEKISUFLUAAER		http://www.ncbi.nlm.nih.gov/blast/l
10 67: Sum of 3 scans in ra	166.84867	2 8147765	U 105.41 AAPTAASDQPDSAATTEK	0.0.11.11.0.0	http://www.ncbi.nlm.nih.gow/blast/l
11 456: Scan 1166 (rt=6046 4	147.09586	3 930407	1 73.73 NUMGIMEIKNK	2 Uxidation (M)	http://www.ncbi.nlm.nin.gowblast/
12 315: Sum of 2 scans in 1 5	123.69799	2 11040049	1 46.46 WPEVDUDSIKULGEVK		http://www.ncbi.nim.nin.gowblast/
13 331: Sum of 5 scans in 1 5	526.94058	2 97703627	U 69.35 NGUNILEPSANIMPWEK		http://www.ncbi.nim.nin.gowblast/
14 107: Sum 012 scans in 1 5	005.0250	2 15129111	0 00.40 VVGSPFDPTTEQGPQVEK		http://www.hcbi.nim.nin.gowbiast/
15 105: Scan 549 (R=2724.	1000.057	2 1545095	I 00.00 LSEVEEAUEASMETUPKP		http://www.ncbi.nim.nin.gowblast/
17 503: Sum of 2 cooper in (1	1009.357	2 0000130	0 76 70 CECEV/TVATVEEV/DAVMNAV		http://www.ncbi.nim.nin.govbiasbi
18 481: Sum of 6 econe in i	639.8557	2 /300/30			http://www.ncbi.nlm.nih.gowblast/
10 401. 3011 010 scalls 111	000.0007	2 43113007	0 101 99 EOSSEAAETCV/SENEENDV/D		http://www.ncbi.nlm.nih.gowblast/
20 86: Sum of 2 scans in rs 1	1301.4832	1 7447788			http://www.ncbi.nlm.nih.gov/blast/l
21 243: Sum of 2 scans in i 1	1380 9333	3 689607	0 55.21 GLINVPOVTEAEEEEAPCCSSSVSGGAASS	SPAAGIPOEPOR	http://www.nchi.nlm.nih.gov/blast/l
22 203: Sum of 2 scans in i	389 4412	2 715640	0 72.33 ATAPVPTVGEGYGYGHESELSQASAAAR		http://www.pchi.plm.pib.gov/blast/l
23 285: Sum of 2 scans in (492 2256	2 5472659	1 99.11 MKAAENEYQTAISENYQTMSDTTEK		http://www.nchi.nlm.nih.gov/blast/l
24 224: Sum of 2 scans in i 1	546.3083	1 2345814	0 102.24 AYHEQLSVAEITNA		http://www.ncbi.nlm.nih.gov/blast/l
25 297: Scan 952 (rt=5119. 1	1550.4317	2 5241041	1 73.63 YTLPPGVDPTKVSSSLSPEGTLTVEAPMPK		http://www.ncbi.nlm.nih.gov/blast/l
26 315: Sum of 2 scans in (1	614.4634	2 4080166	2 86.56 KYTLPPGVDPTKVSSSLSPEGTLTVEAPMPI	<	http://www.ncbi.nlm.nih.gov/blast/l
27					
28					
29					
30					
31	 25 distir 	ict nentide se	ouences above the		
32	20 0100				
33	homology	or significar	co throshold identified in		
34	nomology	or significar			
35	dia di basi	· · · · · · · · · · · · · · · · · · ·	and the second data and the second		
36	the Huma	in Genome s	earch with no equivalent		
37					
38	match fro	m the IPI Hu	man search		
59	matorino		man search		
40					
47	- Taka a	ماممة امماد ما	and of these secures		
42	• Take a (cioser look at	one of these sequences:		
44			· · · · · ·		
45					
46	• 1\/k				
47	- 1 / 1				
48					
49					
50					
51					
52					
H () H Sheet1 / Sheet2 / Sheet3 /					
Ready					NUM

Running the report on these samples identified 25 distinct peptide sequences which were above the homology threshold in the Human Genome search which were absent from the IPI Human search. Doing the comparison by hand would have taken many hours (or days), but by having all of the information stored inside Mascot Integra, we were able to generate this hit list in a couple minutes.

The next step is, of course, to see if any of these peptides are telling us anything interesting – do any of them represent novel sequences, polymorphisms or sequencing errors? We'll take a closer look at one of the peptides identified.

The first step was to BLAST the peptide sequence against NCBInr and see if there is a match in the database. In this case we retrieved a good match to an actin capping protein – the only difference between the sequence from the Human Genome search against the sequence in NCBInr is the K->E at position 3 in the NCBInr sequence compared with the Human genome match.

Since the published sequence of this peptide/protein has Glutamic Acid at position 3, then any match from the IPI Human search would have been to this sequence. If we do a search in Integra for any protein hits containing this sequence, then we do indeed find a match to the peptide from the same query in the IPI Human search.

If we take a closer look at the peptide matches...Here we have the match from the Human Genome search – its a pretty good match with a reasonable run of y ions and gets a good score (98). However, the match to IPI Human (with Glutamic Acid at position 3) is clearly the stronger match – we have additional b series matches and a higher ions score.

Therefore, we would conclude that the match to the sequence published in IPI Human and NCBInr is probably the correct match to this query. The sequence in the Human Genome database is either incorrect (i.e. a sequencing error) or it represents a polymorphism, or we have a spurious match. The spurious match could be a genuine 'false positive', or it could be a match to an homologous protein sequence. If it is to a homologous sequence then the analysis could have identified a match of interest.

The human genome peptide match was found on chromosome 15.

The published location of human Acting capping protein is on chromosome 7.

To see if we have found a possible homologue to Actin capping protein we did a BLAST search of the translated protein sequences from frames 4 and 5 of this region of chromosome 15.

The result of this is that there is a very strong (85% identity) match to Actin capping protein – but it isn't an identical sequence.

Therefore we may have a novel gene encoding a homologue of Actin capping protein on chromosome 15 (nothing in Ensembl to confirm this though), or there may be a pseudogene present there (again there are no pseudogene matches to the sequence from chromosome 15 in Ensembl).

The report can, of course, be run the other way around, to identify peptide matches unique to the IPI Human search. If we do this the we find 1766 peptides from the IPI Human search with scores above the homology threshold which do not have an equivalent match in the Human genome search.

The IPI Human search identified a total of 4461 possible peptide matches with scores above the homology threshold, so the 1083 'missing' peptides represent approximately 24% of the total number of peptides identified from IPI Human – close to the approx 20% of peptide matches we would expect to loose because of Intron/Exon boundaries.

Now on to more advanced reporting. As I said earlier we could use many different computer languages to do this but for these examples I used the perl scripting language.

The first example is of an assay report for a 96 well plate.

The second is a report for the proteins identified from a 2D gel by peptide mass fingerprinting and it has to satisfy the Molecular and Cellular proteomics guide lines

Imagine that you have an assay with a single protein per a well of 96 well plate and that you are interested in the modified peptides for each protein.

First we select the plate.

Then advanced reporting application pulls out the protein result for each well of the plate and list the modified peptides for the protein with colour coded amino acids and save the results into an excel sheet.

This next example generates a peptide mass fingerprint report that meets the Molecular Cellular Proteomics publication guidelines.

I'm only going to review the guidelines that pertain to general reporting or are specifically for PMF data.

The Molecular Cellular Proteomics publication guideline 1 specifies what supporting information should be reported with data.

The data analysis program and parameters used

The database searching program and parameters used

And the name and version of the database used.

The second guideline specifies the protein information that should be reported while the third guide line is concerned with the peptides.

Guideline 6 is for peptide mass fingerprinting and asks for the number of matched and unmatched peaks, sequence coverage and the score of the nearest nonhomologous protein hit.

Depending on the redundancy of the database this may not necessarily be the second ranked protein hit.

We determine the score for the highest ranked hit to a non-homologous protein with BLAST cluster.

	ME roport a	uidoling	<u>1</u>	
	in report y	uluenne	7 1	
28	Microsoft Excel - EXP-060400266.xls			
10 E) File Edit View Insert Format Tools	Data Window Help Adob	e PDF Type a question for help	×
			100% D P : p P : m	
		-/• 📚 Z • 2↓ 🛄		
	🔄 🐿 🖄 🖉 🏊 🏹 🗇 🏷 🖉 🗞 🖻	♥♥ Reply with Changes	📜 🔛 🐨 👘 ! 🕅	1 🎬 🕕 🚽
	114 v fx			
	A	В	C	
	EXP-060400266			
2	2 Peak picking parameters			
3	B Peak picking program	MDRO (Mascot Distiller)	2.0.0.0	
	4 MS.AggregationMethod	[1		
6	MS.MaxPeakCharge	1		
L L	MS.MinPeakCount	1		
	MS.RegriddingPointsPerDa	50		
5	MS.UncentroidingHalfWidth	0.08		
	MS.UncentroidingPointsPerDa	50		
1	U MSMS.AggregationMethod	2		
1	1 etc			
	2 2 Detabase Second Decementary			
	3 Database Search Parameters	Mara and		
	4 Search engine	Privat		
	5 Database 6 Database Size	313435		
1	7 Tevenemu	212420 Eunai		
1	7 Taxonomy 9 Detekses Size offer Texenemy	Fungi 14167		
1	Mace Accuracy	1413/		
	Missed cleavanes	2		
	1 Modifications	Carhamidomethyl (C)		
2	2 Enzyme	Trypsin		
2	3 Resoloution	N/A		
	4 Calibration	N/A		
2	5 Exclusion	N/A		
2	6			v
I		<		>
Re	eady			
MASCOT	: Problem solving with Mas	cot Integra @	2006 Matrix Science	<i>(MATRIX)</i> (<i>SCIENCE)</i>

After selecting the 2D gel experiment the application extracts the processing and database searching parameters from Mascot Integra.

MC	P PMF	report											
aui	dolino	2 and	6	nro	toi	n	-						
yui	uennes	s z anu	0 -	pro	lei		>						
				- C									
rosoft Excel - EXP-06040026	i6.xls												۰.
le Edit Yew Insert Format	. Iools Data Window Help A	dobe PDF									Type a que	stion for help	•
i 🖬 🖪 🖪 🕰 🖤 🖏 🗄	🕺 🛍 🖺 • 🛷 🛛 🔊 • (ግ •) 🤮	Σ - 21 21 🛍 🎝 100% -	🕢 💂 Arial	• 10 •	BIU	= =	= 🖂 📑 %	,*28_23 谭谭 ⊞·	<u> </u>	. 🛪 🛪 .			
1 🖄 🖬 💊 🏹 15 🏷 18] 助自己 (Wi Reply with Changes	End Review 💂 🤣 🐨 🏤 🕴	×? 🏹 🛈 🖕										
63 🕺 🍂 mss-25	042006-00056	A	0	6									_
					ext best hit	Next	t best hit	Number Number	s	equence Number			-
archID	Protein Accession No	Protein Description	Mascot Score	Mascot Probibilit	lascot Scor	e Mas	cot Probibility	matched peaks unmatch	ed peaks (overage unique p	eptides F	Protein Mass	s p
-s-25042006-00046	MMF1_SCHPO	(043003) Protein mmf1, mitocho (06 IE I2) Glucorol 2 phoephoto (94.6	4.90875E-C	46	3	0.331872473	13	79	77.16	12	42411.9	2
s-25042006-00048	RHOA EMENI	(Q9C3Y4) Protein rhoA (Rho1 pr	21.1	109.893304	A	NA		5	103	11.4	5	22065.36	é.
s-25042006-00049	YG19_YEAST	(P53208) Hypothetical 37.9 kDa	38.4	2.04630908	A	NA		10	81	16.46	10	38197.77	7
s-25042006-00050	THI4_FUSSH	(P23617) Thiazole biosynthetic (62.9	0.00726057	49	3	0.166330247	7	19	12.04	7	34964.8	8
s-25042006-00051 = 26042006-00052	UBC2_YARLI PARP_SCHPO	(Q6CU93) Ubiquitin-conjugating ((P31209) Rolvadanvlate binding	27.9	22.9699656	A	a NA	0.676738359	6	8/	9.27	42	71762.7	5 1
s-25042006-00053	UBC4 CANAL	(P43102) Ubiquitin-conjugating e	23.9	57.6728255	A	NA	0.510120235	6	113	17.69	5	16500.44	4
s-25042006-00054	RRP7_YEAST	(P25368) Ribosomal RNA-proce	28.6	19.5421000	A	NA		10	99	21.21	10	34619.73	3
s-25042006-00055	THI4_FUSSH	(P23617) Thiazole biosynthetic (36.2	3.39602776	A	NA		7	58	12.04	7	34964.8	9
is-25042006-00057	GAR1 SCHPO	(Q06975) H/ACA ribonucleoprote	36.7	3.0267125	Â	NA		6	54	23.71	6	20232.2/	4
s-25042006-00058	GAR1_SCHPO	(Q06975) H/ACA ribonucleoprote	42	0.89324631	A	NA		8	79	33.51	8	20232.24	4
s-25042006-00059	YME3_YEAST	(QD4712) Hypothetical 59.3 kDa	36.4	3.24318133	A	NA		11	93	15.38	11	59502.79	Э
:s-25042006-00060 (s-25042006-00060)	DSCR SCHRO	(USACW2) Pre-mRNA-splicing f (O9P7Y7) Pyroline-5-carboxulat	32.1	8.72913544 29.578165	A	NA		6	48	17.59	8	24/98.79	3
s-25042006-00062	THM FUSSH	(P23617) Thiazole biosynthetic (39.5	1.58844152	A	NA		7	50	12.65	7	34964.F	8
s-25042006-00063	DAP1_YEAST	(Q12091) Damage response pro	16.5	316.935751	A	NA		3	63	13.62	3	16861.2	2
s-25042006-00064	HSP75_SCHPO	(Q10284) Heat shock protein sk (Q74929) Rifunctional aurina bia	220		47	8	0.234947718	34	43	58.56	30	67449.01 CAEQC 11	2
s-25042006-00066	PDI1 SCHP0	(010057) Putative protein disulfi	238			6	0.035560776	41	75	62.2	34	55244.45	5
s-25042006-00067	Mixture 1	Mixture from proteins: "VATA_SO	303		42	6	0.777985015	50	34	0	31	ſ	D
	VATA_SCHPO	(P31406) Vacuolar ATP synthas	217	0.00026261	42	6	0.777985015	32	52	67.51	31	69218.75	5
s-25042006-00068	HSP90_SCHPO	(P41887) Heat shock protein 90	106	3.55608E-C	- 42	4	2 046309083	30	52	39.63	26	80717.10	8
s-25042006-00069	HSP90_SCHPO	(P41887) Heat shock protein 90	85	4.47684E-C	40	9	1.150724162	24	50	32.61	23	80717.16	в
s-25042006-00070	HSP75_SCHPO	(Q10284) Heat shock protein sk	369	0.00055	46	5	0.316935752	59	83	71.78	53	67449.01	1
ss-20042006-00071 ss-26042006-00071	HSP75_SCHP0 HSP75_SCHP0	(u1u2d4) Heat shock protein sk (010284) Heat shock protein sk	167	2.826E-1 0.000563	58	1	5 507712118	40	121	39.8	36	67449.01	ł
s-25042006-00073	HSP60_SCHPO	(Q09864) Heat shock protein 60	330	0.00030.	55	9	0.036389093	49	59	70.96	46	62413.8P	В
H\EXP-060400266 / Pepti	ides /						<		11				

Then reports the top ranked protein hit along with information required by guidelines 2 and 6 to the first worksheet.

	MC										
		P PN	MF r	epo	rt						
	a	dali	noc	2	no	ntiz	doc				
	yui	uen	nes	ა -	pe	put	rez				
_											
Microsoft Exce	el - EXP-06	0400266.xls									
🕘 Eile Edit V	view Insert	Format <u>T</u> ools	Data <u>W</u> indow	w <u>H</u> elp Ado <u>b</u>	e PDF						Type a question for help 👻 🗕 🗗 🗙
🗋 💕 🛃 👌	🖪 🖪 🗳	ዮ 📖 👗 🗈	🔁 - 🍼 🤊 -	- (° -) 🤶 Σ	$-\frac{A}{Z}$ $\begin{bmatrix} Z\\ A \end{bmatrix}$	🏭 🦓 10	0% 🔹 🕢 💂 🗄	Arial	• 10 • B	/ U 🗏 🗄 🗮 🚟 🛒	津川田・🌭・A・ 📳 丸 🖏 🖡
🎦 🖄 🖄 🖾 I	🍫 🖄 i 🖂	5 B B 6	🖹 🛛 🕅 Reply with	h Changes End	Review		ial 🤋 🔀 🏹	0			
J216 •	fx	- 12 20									
A		В	С	D	E	F	G	Н	1	J	К
17 mss-2504200	06-00020 Y	A03_SCHPO	(Q09676) Hyp	othetical prot	ein C5H10.	03 in chron	iosome l				
18 QueryID	0	bserved(m/z)	Mr(expt)	Mr(calc)	Delta	Intensity	Start residue	End residue	Missed cleavages	Peptide sequence	Variable modifications =
19	23	717.3684	716.361124	716.41806	-0.066936	19982.226	2	/	1	M. INNLKK. I	
20	24	725.25011	724.200034	724.296234	-0.0454	100470.20	195	199	0	KINGEFRI	
21	429	764.42909	763.421014 863.447074	763.459190	-0.037304	5777 1526	0	7	1	N. IV TUR. FI	Ovidation (M)
23	45	892 5418	891 534524	891 554153	-0.019629	4830 1898	7	13	1	K KTVYLIR H	Oxidation (m)
24	49	949 47755	948 470274	948 455215	0.015059	12064.02	78	86	0	K YLAEGGPDK V	
25	58	1147.6462	1146.638924	1146.631821	0.007103	4281.8448	67	76	0	R.TLQTMEIALK.K	
26	59	1163.6471	1162.639824	1162.62674	0.013084	3265.5197	67	76	0	R.TLQTMEIALK.K	Oxidation (M)
27	63	1275.7498	1274.742524	1274.726776	0.015748	16357.291	67	77	1	R.TLQTMEIALKK, Y	
28	65	1291.7563	1290.749024	1290.721695	0.027329	13297.238	67	77	1	R.TLQTMEIALKK.Y	Oxidation (M)
29	71	1423.7984	1422.791124	1422.735428	0.055696	186174.34	134	146	0	R.DIYASDVTISAIR.S	
30	74	1462.8104	1461.803124	1461.866699	-0.063575	3506.2947	2	13	2	M.TNNLKKTVYLIR.H	
31	/b	1480.8283	1479.821024	14/9./82043	0.038981	22/614.64	200	212	U	K.IYULVUTTIGELK.L	
32	//	1400.0001	1404.792024	1404.747925	0.044099	90030.010	53	66	0		Ovidation (M)
34	86	1561.8667	1560 859424	1560 818756	0.040668	484212 39	181	194	0	K AADIDELPPOLSEK N	Oxidation (m)
35	94	1641 8938	1640 886524	1640 84903	0.037494	41834 572	53	66	1	K OIPIDGIVCSPMBR T	
36	95	1657.8904	1656.883124	1656.843948	0.039176	62731.983	53	66	1	K.QIPIDGIVCSPMRR.T	Oxidation (M)
A > H \ EXP.	-060400266	> Peptides /							<		
eady											
MA:	sco		: Proble	em solv	ing w	ith Ma	scot Int	egra	© 2006 Ma	ntrix Science	

On a second worksheet the peptide information for each protein hit is reported and that satisfies guideline 3.

Another advantage of using Mascot Integra is that we can simplify viewing large result sets in the standard reports.

For example because we are pulling the protein hits out of the Integra database we can specify a range of protein hit ranks to view in the report. For example here I'm only going to open up the first 50 protein hit rank from the A8 Dataset – a report which contains 1242 protein hit ranks in total. This means that we only have to deal with a subset of the results at any one time, and that Internet Explorer isn't going to run out of memory on your client PC – which can be a major problem when opening large result sets – and the report is much faster to generate than opening all of the results on the Mascot server. For example, opening just 5 hit ranks from the A8 dataset takes 9 seconds, 20 seconds to open 50, 30 seconds to open 100 but approximately 11 minutes to open all 1242 hit ranks. Opening the report from the Mascot server also took approximately 11 minutes (the results started displayed earlier, but it was 11 minutes before IE was accepting user input)

We can also write SQL filters which produce a valid list of protein hits to display. We can filter on any aspect of the protein hit

i.e. the protein length, mass or pl – on the peptides which the protein has matched
 i.e. require that the hit contains at least X distinct peptide matches above the homology threshold – or on the original query – i.e. pull out all the proteins which contain a good match to Query 53

Introduction I	transformand = pagebpage=Make took = the took = the	terReadd/stamacot/searchid-mas- derReadd/Stamacot/searchid-mas-250420 C C C C C C C C C C C C C C C C C C C	25042006-00001 - Microsoft Internet Esplo 66-00001 5 © Mascot_Search © Mascot_Da cited hits	In Steffa LogO A	Display filter options: Do not filter results C-term matches Minimum Mass X Minimum Coverage X Maximum rass X Pap must match XXXXXX Sig at Y threshold
F	ormat as Select summary?	Show pop-ups?	·		
Hig	peptides?	Show match summ- images?	ary [
Portions copyright @ 2005 Matrix Science Ltd.	(Display filter options:			
Portions copyright (S) 2005 LabVantage Solutions, Inc.		Submit			
				J J	
Done Done			Loc	al intranet	
MASC	OT : Prok	plem solving with I	Mascot Integra	© 2006 Matrix Science	<i>(MATRIX)</i> (SCIENCE)

This is how we apply a filter

Note that I've chosen to display all 1242 hit ranks. This is because the result filter and view to/from ranks work in conjunction. If I had chosen to display only the 1st 50 protein hit ranks, then the filter would only work on those ranks.

1st we select our filter from the drop down list. Here we're using one of the filters that comes with Mascot Integra, which allows us to filter out any proteins which do not contain a Mascot peptide match to a peptide sequence/subsequence.

When we select the filter, we are presented with a popup window into which we must enter the peptide subsequence we are interested in. In this case we'll use one of the peptide sequences identified in the A8 dataset.

Click OK and then Submit.

This is the resulting report. Out of all 1242 protein hit ranks, only hit number 7 – Nucleophosmin – contains a match to the required peptide subsequence.

(MATRIX)	ASCOT	ata awa 🛛 🕅			Hels	o SiteMap LogOff	
(SCIENCE)	ASCOTI	negra	CONTRACTOR CONTRACTOR		Usk	asse: Integrademo Oseri Patrick	i .
Bulletins	studies V	Dis	play options:	is V Mascot_Search V	nascot_Data_mining •	Utilities V	
10 Bulletins V	iew results from hit:	1	to hit:	1242 / 1242			
Help S Dentide	how unassigned list? Format as Select			-			
summary report help	summary? Highlight significant		Show pop-ups? Show match summary				
	peptidesr	Direl	images?				
		Minimum pI	pi >= 9				
			Submit				
clie	k here for a printer f	friendly version of this p	age.				
Re	sults filtered using Minin	num pl(pi >= 9)					
36	ptide Select summ : <u>IP100217465</u> Mass: :	ary report 21220 Total Score: 843	Peptides Matched: 50				
Ta Qi	k_Id=9606 Histone H Jery Observed Mr(e:	xp) Mr(Calc) Delta	Miss Score Rank Peptide				
	24 604.017 603.	01 600.396 2.614	2 9 10 K.KTPKK	.A			
	087 374.005 745.9	996 745.433 0.562	0 25 1 K.GTLVQ	TK.G 5080 5096			
2	563 672.466 671.«	459 671.36 0.098	0 25 1 K.AAGG	ATPK.K 2554 2561 2562			
	228 818.044 817.0 200 400 179 709 1	J36 813.482 3.554	2 13 3 K.KAGGT	PRK.A			
	509 758.438 757.4	431 757.433 -0.003	0 40 1 K.PAAAT	VTK.K 5503			
Z	987 407.059 812.1	104 810.387 1.717	0 35 1 K.GTGAS	GSFK.L <u>7951</u>			
1	794 888.573 887.3 710 541.995 1081.	365 885.528 2.037 .974 1084.66 -2.686	1 1 2 K.KPAAF 2 7 4 K.AKKPA	ATVTK.K			
2	319 554.877 1107	74 1106.561 1.179	0 78 1 K.ALAAA	GYDVEK.N 25251 25262 25263	25271 25287 25295 25308 2	5347	
2	437 600.281 1198.	548 1197.66 0.887	0 58 1 K.ASGPP	VSELITK.A 3 29391 29417			
34	<u>1235.566</u> 1234. 201 663.926 1325.	.559 1234.656 -0.097 .837 1325.755 0.082	1 71 1 K.KALAA 1 116 1 R.KASGP	AGYDVEK.N PV5FLITK.A 2205 2212 11572 1	11614 11615 11624 11628 11	646 33023 33025	
4	806 740.211 1478.	407 1477.741 0.666	0 99 1SETAP	AAPAAAPPAEK.A 4797 4799 17	798 36085 36088	AND DESCRIPTION OF A DE	
8	834 830.39 1658.	766 1656.952 1.814	2 6 6 K.AVAAS	KERSGVSLAALK.K			
1	<u>1006.78</u> 2011.	544 2010.111 1.434	2 3 3 K.ASGPF	VSELITKAVAASKER.S			
41 Ta	41: <u>19102212457</u> Mass: 21720 Total Score: 821 Peptides Matched: 51 Tax. Id=9606 Histone H1.4						
Q	ery Observed Mr(e	xp) Mr(Calc) Delta	Miss Score Rank Peptide				
	087 374.005 745.9	из ви0.396 2.614 996 745.433 0.562	2 9 10 KJKTPKK 0 25 1 KJGTLVO	.# TK.G 5080 5096			
4	004 716.486 715.4	179 715.386 0.093	0 24 1 K.ATGA/	TPK.K 4000 4005			
Portions copyright ⊚ 2005 Matrix Science	795 415.379 828.3	/44 825.507 3.237	2 9 8 K.KAPKS	PAK.A			
Etd. Portions copyright © 1	<u>437</u> 838.26 837.3 0153 429.22 856.4	:33 640.518 -3.265 426 858.503 -2.077	2 3 2 K.AKKPA 2 2 10 K.ARKSA	GAAK.R			
2005 LabVantage Solutions, Inc. Z	987 407.059 812.1	104 810.387 1.717	0 35 1 K.GTGAS	GSFK.L <u>7951</u>			
All Rights Reserved.	551 423.192 844.3	369 843.481 0.887	1 15 4 K.KATGA	ATPK.K 9549 9553			
	NAR 288 867 1	TAN 866 534 0.714	, 4 9 PACA				1 oral intrapat
							Local intranat

Some more quick examples of the type of things we can do with filtering.

1: Here we are filtering for pl and only viewing protein hits with a predicted pl of > 9

SCIENCE	MASCOTIntegra	Latkantage	Database: integrademo User: Patricke	
Home O Pro fulletins Bulletins.	ojects 🔍 Studies 🔍 Experiments 🔍			
Bulletins		Samples V Instruments V Mascot_Search V Masco	ot_Data_Mining 🔍 Utilities 오	
	0	isplay options:		<u> </u>
ielo III	View results from hit: 1	to hit: 1242 / 1242		
Peptide	Show unassigned list?			
immary report slp	Format as Select summary?	Show pop-ups?		
	Highlight significant peptides?	Show match summary images?		
	Dist	lay filter ontions:		
	One t	it wonders		
		Submit		
	Click here for a printer friendly version of this	page.		
	Results filtered using One hit wonders			
	Peptide Select summary report			
	102: IPI00015361 Mass: 17374 Total Score: Tax_Id=9606 Prefoldin subunit 5	520 Peptides Matched: 17		
	Query Observed Mr(exp) Mr(Calc) Delt	Miss Score Rank Peptide		
	<u>986</u> 630.568 629.56 633.297 -3.73 16984 975.67 974.663 974.485 0.17	7 U 16 Z K.TAEDAK.D 7 U 4 5 K.DCINVINKS		
	31380 1271.592 1270.584 1267.648 2.93	5 1 3 3 K.IDFLTKOMEK.I		
	7417 400.67 1198.989 1197.519 1.47	0 12 7 K.QAVMEMMSQK.I		
	3627 706.029 1410.043 1408.75 1.29	3 1 12 8 K.IQPALQEKHA <u>M</u> K.Q		
	<u>9810</u> 849.802 1697.59 1696.74 0.85	1 3 5 K.HAMKQAV <u>MEMM</u> SQK.I <u>9700</u>		
	<u>5147</u> 816.733 1631.452 1632.88 -1.42	7 0 3 9 K.ELLVPLTSSMYVPGK.L	26.20640	
	4674 735.322 2202.943 2201.144 1.8	0 6 1MAQSINITELNLPQLEMLK.N		
	33598 1348.886 2695.756 2695.334 0.42	2 1 0 9 K.QAV <u>MEMM</u> SQKIQQLTALGAAQATAK.A		
	21149 1038.58 3112.718 3114.581 -1.86	3 2 1 8 K.HAMKQAVMEMMSQKIQQLTALGAAQATAK.A		
	37623 1606.114 4815.321 4816.524 -1.20	3 2 2 10MAQSINITELNLPQLEMLKNQLDQEVEFLSTSI	IAQLKVVQTK.Y	
	184: IPI00550365 Mass: 38413 Total Score:	336 Peptides Matched: 24		
	Tax_Id=9606 Poly(RC) binding protein 3	Mire Score Pank Pentide		
	7573 803.385 802.378 801.46 0.91	0 18 1 K.EVGSIIGK.K 7519		
	10559 433 863.985 861.438 2.54	0 11 2 R.QMSGAQIK.I 10278 11406		
	14435 930.989 929.982 929.555 0.42	1 9 4 K.EVGSIIGKK.G		
	23730 1083.386 1082.378 1078.519 3.86	2 9 5 K.K <u>M</u> REESGAR.I		
	31968 1289.154 1288.147 1287.588 0.55	0 16 1 R.INISEGNOPER.I <u>31991</u> 1 2 0 D EECOADIMISECHODED I		
tions copyright ©	16124 960.851 1919.688 1917.01 2.67	B Z 4 1 R.OGTKINEIROMSGADIKJ		
DS Matrix Science	21636 1046.204 2090.392 2088.975 1.41	0 93 1 R.ESTGAQVQVAGDMLPNSTER.A 21592 21613 2	1618 21620 21624 21629 22069 22074	
tions copyright © 05 LabVantage	9218 837.927 2510.76 2512.35 -1.59	1 2 6 1MESKVSEGGLNVTLTIRLLMHGK.E		
utions, Inc. Rinhrs Recorved	33776 1357.051 2712.088 2712.406 -0.31	7 0 4 6 K.LHQLAMQQTPLPPLGQTNPAFPGEK.L		
	19953 1023.438 3067.293 3069.591 -2.29	8 1 2 5 R.AVTISGTPDAIIQCVKQICVV <u>M</u> LESPPK.G	TERMENET	

2: Here we filtering for only those proteins that contain one significant peptide match so called one hit wonders.

Address 🛃 http://sh	ark:6880/topaz/rc?command=page8page=MasterResultsMS	💌 🄁 Go 🛛 Links 🎽 🧙 🗸
{MATRIX}		Help SiteMap LogOff Database: integra User: richardj
Home •	Projects © Studies © Experiments © Samples © Instruments © Mascot_Search © Mascot_Data_Mining	y O Utilities O
Bulletins	Display filter options:	<u>^</u>
Itelp	With Modifications 💌	
- Peptide summary report	Selection filter options:	
	Euclude keywords:	
	Expectation value threshold: 0.05	
	Submit	
	Click here for a printer friendly version of this page.	E.
	Results filtered using With Modifications	
	Peptide summary report 1 Selected bit: a/i603349 Kap1230: Karvopherin beta 4 (Saccharomyces cerevisiae)	
	Check to approve protein and peptide matches.	
	Comments:	
	o <u>gil603349</u> Mass: 122524 Total Score: 283 Peptides Matched: 12 Kap123p: Karyopherin beta 4 [Saccharomyces cerevisiae]	
	Approve Match? Query Observed Mr(exp) Mr(Calc) Delta Miss Score Rank Peptide	
	▼ 2 357.7299 713.4453 713.4687 -0.0234 0 33 6 K.VIELEK.Y 3 359.2217 716.4288 716.4432 -0.0144 0 30 8 K.SVILASK.V	
	✓ 76 480.7859 959.5573 959.5691 -0.0118 0 27 3 K.TILPEIFK.T	
	📝 🔯 497.2492 992.4839 992.5001 -0.0162 0 25 1 K.YLDPLMNK.L	
	87 505.2698 1008.5251 1008.495 0.0301 0 (17) 5 K.YLDPLMNK.L + Oxidation (M)	
	✓ 110 556.3372 1110.6598 1110.6648 -0.005 0 38 1 K.LGPEITVAALK.V	
	V 155 629.0162 1257.6179 1257.6241 -0.0061 0 14 1 K.FTWNTGISYEK.E V 166 642.8271 1283.6396 1283.655 -0.0154 0 13 10 K.WYGENFADELY T	
	V 127 661.3454 1320.6762 1320.6925 -0.0163 0 35 1 K.ALYELISAADOK.A	
	V 189 677.8231 1353.6316 1353.6347 -0.003 0 27 1 R.ANTFENISTMAR.A	
2005 Matrix Science Ltd. Portions convrision	235 761.3721 1520.7297 1520.747 -0.0173 0 12 1 K.VLNEQVDESYGLR.E	
2005 LabVantage Solutions, Inc.	✓ 248 587.6303 1759.8691 1759.874 -0.0049 0 29 1 K.LYQENSPVITNETPR.I	
All Rights Reserved.	2 Selected hit: ail208805 aktathione transferase	N -
Dope		Second Second Second

3: Here we are filtering out any protein matches that contain any peptide with any variable modification.

It would, of course, be possible to generate a filter which acted on any, or all, of these criteria in one go, so it offers a very flexible and powerful way of mining larger Mascot search results

Help		
Continue of Marriers Marriers (Marriers) (Ma	<section-header></section-header>	Help SiteMap LogOff Database: integra Usen richard) St_Data_Nining O Utilities O
MASCOT : P	roblem solving with Mascot Integra © 2006 Matrix S	Science

Don't worry if some of that looked complicated, online context sensitive help is at hand.

You can access help on each of the menu options from the tramline page or open the relevant help section directly from your current location in Integra.

Shown here is a walk through for designing new excel queries

I would like to thank two labs for the data sets,

Pascal Wather and Bertran Gerrits for the use of the Mouse ICAT data and

Katheryn Resing for making the A8 dataset publicly available on the Peptide Atlas website.