Top 10 Tips for Successful Searching

ASMS 2003

SMATRIX SCIENCES

I'd like to present our top 10 tips for successful searching with Mascot. Like any hit parade, we will, of course, count them off in reverse order

10. Don't specify a poorly represented taxonomy

 In most cases, if the correct protein is not in the database, you'd like to see the closest match ... whatever the species Pie Edit Format Help
All entries=1437245
Archaea (Archaeobacteria)=48249
Eukaryota (eucaryotes)=679189
Alveolata (alveolates)=20844
Plasmodium falciparum (malaria parasite)=8561
Other Alveolata=12290
Metazoa (animals)=462646
Caenorhabditis elegans=27922
prosophila (fruit files)=29828
Chordata (vertebrates and relatives)=347716
Iobe=fined fish and tetrapod clade=322723
Mammalia (mamals)=293341
Primates=0900
Rodentia (Rodents)=145587
Mus.=96442
Mus musculus (house mouse)=95155
Rattus=43907
Other rodentia=5807
Other mammalia=27359

✓

ASMS 2003

So, at number 10, Don't specify a poorly represented taxonomy.

Think carefully about what you are trying to achieve when specifying a taxonomy filter.

If the correct protein from the correct species is not in the database, wouldn't you want to see a good match to a protein from a different species?

This is especially important for poorly represented species. For example, look at these numbers for the NCBI nr database in June 2003: 1.4 million entries; 120,000 entries for primates, of which all but 9,000 are for human. So, even if you are studying chimps or orang-utans or yeti, you probably don't want to choose 'Other primates'.

9. Use the Peptide Summary Report for MS/MS results

- The Protein Summary Report is intended for Peptide Mass Fingerprint results
- Worst case is a complex mixture with lots of queries
 - Protein Summary is 50 proteins max
 - Matches to sets of identical peptides are not collapsed into single protein hits, so a match may disappear off the end of the top 50
 - Weak matches may disappear into the distribution of random PMF matches

ASMS 2003

At number 9, We encourage you to Use the Peptide Summary Report for MS/MS results

There are several flavours of reports for Mascot search results. Historically, the first report was the Protein Summary, used for peptide mass fingerprint results. Because this was the first report, there are still some old clients out there that specify this report for all searches. Unfortunately, in most cases, the Protein Summary is not a good way to view MS/MS results. For example:

Mascot Search Results - Microsoft Internet Ex			_ 8 3
File Edit View Favorites Tools Help	μοι τ		
	vorites 🛞 Media 🥨 🛃 🖆 🖾 🗐 🕅		N
Address 🕘 http://www.matrixscience.com/cgi/master_	results.pl?file=/data/20030531/FTncixYE.dat	•	∂Go Links
(MATRIX) SCIENCE/ Mascot Sear	ch Results		
Vser : Email : Search title :			
MS data file :			
	(1434562 sequences; 461081222 residues)		
Timestamp : 31 May 2003 at : Significant hits: gi 13623199	L4:59:30 GMT ATP citrate lyase [Homo sapiens]		
gi 418694	serum albumin precursor [validated] - bovine		
gi 11544639	importin7 [Homo sapiens]		
gi 2102696	karyopherin beta 3 [Homo sapiens]		
<u>gi 1351908</u> gi 6136092	Serum albumin precursor (Allergen Fel d 2) Ubiquitin-activating enzyme E1		
gi 1362855	lrp protein - human		
gi 2244652	HS24/P52 [Homo sapiens]		
gi 3287937	Vinculin (Metavinculin)		
<u>gi 4501841</u> gi 1082769	alanyl-tRNA synthetase [Homo sapiens] RNA helicase A - human		
gi 4240147	KIAA0829 protein [Homo sapiens]		
gi 191765	alpha-fetoprotein		
<u>gi 28194088</u>	karyopherin-beta 3 variant [Xenopus laevis]		
Probability Based Mowse Score			
Score is -10*Log(P), where P is the probab Individual ions scores > 48 indicate identity	ility that the observed match is a random event.		
monorous fons scores > 40 monoate identity (n extensive noniorogy (p∼0.05).		
11 the contract of the contrac			
10			
			Þ
		🔮 Internet	

This result from an MS/MS search has 12 significant matches. There is a little bit of duplication, e.g. 2 serum albumins, but not much

_	scot Search Results - M		xplorer	-8-
Eile	<u>E</u> dit <u>V</u> iew F <u>a</u> vorites	<u>T</u> ools <u>H</u> elp		
🕁 Bai	:k • 🔿 - 🙆 🛃 🚮	🛛 🔕 Search 🛛 🝙 F	avorites 🍕	Media 🧭 🛃 - 🎒 🗹 📃 🕼
ddres	s 🗿 http://www.matrixse	rience.com/cgi/master	r results.nl?fi	e=/data/20030531/FTncixYE.dat&REPTYPE=protein&REPORT=50
<u>_</u>		cloricomy egymascor	_rosacsipiti	
Ind	ex			
			_	
	Accession	Mass	Score	Description
	gi 20141248	120748	368 363	ATP-citrate synthase (ATP-citrate (pro-S-)-lyase) (Citrate cleavage enzyme)
	gi 13623199 gi 8392839	120762 120559	363 292	ATP citrate lyase [Homo sapiens] ATP citrate lyase [Rattus norvegicus]
		119651	292	
	gi 28514402 gi 4501865	121342	292	ATP citrate lyase [Mus musculus] ATP citrate lyase [Homo sapiens]
	gi 17028103	92420	223	ATP-citrate lyase [Rattus norvegicus]
	gi 18204829	64981	223	Acly protein [Mus musculus]
	gi 21754275	76396	213	unnamed protein product [Homo sapiens]
	gi 5851949	18527	189	ATP-citrate lyase [Gallus gallus]
	gi 2190337	69278	153	serum albumin [Bos taurus]
	gi 418694	69225	153	serum albumin precursor [validated] - bovine
	gi 1351907	69248	153	Serum albumin precursor (Allergen Bos d 6)
	gi 27679544	98507	131	similar to RAN binding protein 7; RAN binding protein 7 (importin 7); importin 7 [
	gi 26333317	103295	129	unnamed protein product [Mus musculus]
	gi 11544639	116304	129	importin7 [Homo sapiens]
	gi 1351908	68615	123	Serum albumin precursor (Allergen Fel d 2)
	gi 5453998	119440	127	importin 7; RAN-binding protein 7 [Homo sapiens]
	gi 11342591	119509	127	RanBP7/importin 7 [Mus musculus]
	gi 28481575	82681	126	similar to RAN binding protein 7; RAN binding protein 7 (importin 7); importin 7 [
	gi 2102696	123512	120	karyopherin beta 3 [Homo sapiens]
	gi 28277071	125507	120	karyopherin (importin) beta 3 [Homo sapiens]
	gi 24797086	125464	120	karyopherin beta 3; Ran GTP binding protein 5; importin beta-3 subunit [Homo sapie
	gi 4033763	123550	120	Importin beta-3 subunit (Karyopherin beta-3 subunit) (Ran-binding protein 5)
	gi 416704	186013	113	Balbiani RING protein 3 precursor
	gi 3319897	65861	104	albumin [Canis familiaris]
	gi 6687188	68560	101	albumin [Canis familiaris]
	gi 2147092	29989	94	albumin - dog (fragment)
	gi 229552	66088	94	albumin
	gi 13124699	68562	90	Serum albumin precursor (Allergen Can f 3)
	qi 1314732	186032	87	185 kDa silk protein
	gi 20826641	106352	87	similar to zinc finger protein 91 (HPF7, HTF10) [Homo sapiens] [Mus musculus]
	gi 2244652	52334	83	H324/P52 [Homo saniens]
	gi 164318	69352	81	albumin
	gi 113578	69366	81	Serum albumin precursor
	gi 13278232	73717	81	heat shock protein, 110 kDa [Mus musculus]
	ie			

If we look at the same results in protein view, there is much greater duplication, because this type of report isn't trying to collapse hits that share a common set of MS/MS matches.

Now, we have 7 or 8 representatives for the more common protein hits, which means that the lower scoring hits are pushed off the bottom of the list.

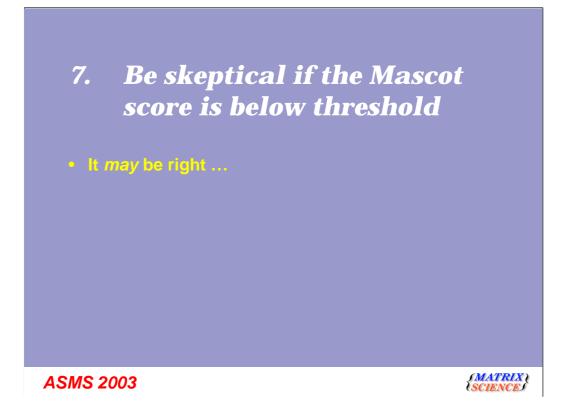
Also, you can't see the wood for the trees.

So, if you have old client software that brings up a protein summary for an MS/MS search, the first thing to do is click on the link to switch to the peptide summary

8. Submit new modifications to Unimod

On-line at www.unimod.org

- Saves calculating mass values
- Saves having to understand the syntax of the Mascot mod_file
- Share your modification with other Mascot users
- Provides a way to update the modifications list on the Mascot public web site


ASMS 2003

At number 8, if the modification you need isn't on the Mascot search form list, submit it to Unimod. The advantages of doing this are <read from slide>

Edit ⊻iew Fa					
ack 🔹 🔿 👻 🙆	😰 🚮 🥘 Search	📓 Favorites 🛛 🖓 History 🛛 🖓 🕶 🎒	Powermarks 🕅 🗡	\$ [*] /•	
ss 🩋 columns_to_	_view=code_name&colur	nns_to_view=mono_mass&columns_to_vie	ew=avge_mass&columns_to_view=co	mposition&display_details_view	v.x=7&display_details_view.y=13 🗾
UNIA		in modifications for mass spe	ctrometry		
View All Records				Help Home Opt	ions Advanced Search Logon
	100 1100010				Gn
				Search	
Record Detai			And the last		
Accession #		Short name	Acetyl_light		
Modification Composition		reagent light form (N-term 8 Monoisotopic	42.010565	Average	42.0367
Specificity De		monoisocopic	42.010505	Average	42.0307
	K	Position	Anywhere		
Neutral Loss		Monoisotopic	,	Average	
	Isotopic label				
Comment					
Specificity De	efinition 2				
Site	N-term	Position	Any N-term		
Neutral Loss		Monoisotopic		Average	
	Isotopic label				
Comment Notes and Re	afarancas				
Source		ce Controlling Deuterium isot	tone effects in comparativ	e proteomics. Zhang	Routian: Sioma Cathy
o di Go	Joannan Const en	S.; Thompson, Robert A.; University, West Lafayette	; Xiong, Li; Regnier, Fred I	E. Department of Ch	
Source	Journal Referen	ce Global internal standard to Fred E Department of Ch Chromatography, A (2002	nemistry, Purdue Universit		
Source	Journal Referen	ce Comparative proteomics E Riggs, Larry; Zhang, Rou Cathy; Thompson, Robert	jian; Xiong, Li; Liu, Peiran;	: Chakraborty, Asish;	
Notes					
Curator	penner	Last Modified	2002-10-20 10:5	0:36	
					Email Change Request

Unimod is a live, public domain database. If you add a modification, you become the curator of that modification. The database is used to update the Mascot mod_file every weekend. If you have an in-house Mascot server, you can download the same new mod_file

At number 7, with a bullet, Be skeptical if you want to accept a match when the Mascot score is below threshold. You may be right ...

	<u>E</u> dit <u>V</u> i	iew F <u>a</u> vol		ols <u>H</u> elp										
	Back → ⇒			🗟 Search	_					1	marks 🕅		•	
Įdre	ess 🤌 http	p://www.ma	atrixscience	e.com/cgi/pe	ptide_view.	pl?file=/o	data/200008	28/FTm	icobu.dat&q	uery=338ł	nit=38index:	=8p×	=1	-
					y(8)									
					62									
														_
		6	y(4)	~		-1010) - y(9)						(
				(9)h-		a							Identity threshold	
						1) di	_						-	
	b(2)++,L	a(4)	9				9(11) A						for this search is 73	
	:)q		.(9)#d-				1							
ŗ	يها للنسب	ملوا فاستكالك	الموا الحق	فتحجم فالقبر للسل	htere and the second second	عللم بلاب			·····	<u> </u>				
0		400		800		1200		1600		2000				
				utral pe (Bold P			426.86 agment :	ions	using 3	9 most	intense	e pe	eaks	
DN	s Score	: 55 M	atches	(Bold P	ted): 19	/89 fr	agment :		-			_	eaks	
on #	s Score Immon.	:55 M	atches		b	/89 fr b ⁺⁺	agment :	Seq.	using 3	9 most y ⁺⁺	intense y*	#	zaks	
9n ¥ 1	s Score Immon. 86.10	: 55 M a <u>86.10</u>	atches a⁺⁺ 43.55	(Bold P	b 114.09	/89 fr b ⁺⁺ 57.55	agment :	Seq. L	У	y ⁺⁺	y*	# 12	zaks	
סח 4 1 2	s Score Immon. 86.10 30.03	a 86.10 143.12	atches a ⁺⁺ 43.55 72.06	(Bold P	b 114.09 171.11	/89 fr b ⁺⁺ 57.55 86.06	agment :	Seq. L G	y 1314.79	y ++ 657.90	y* 1297.76	# 12 11	zaks	
9 n # 1 2 3	s Score Immon. 86.10 30.03 74.06	 a 86.10 143.12 244.17 	atches a ⁺⁺ 43.55 72.06 122.59	(Bold P	b 114.09 171.11 272.16	b ⁺⁺ 57.55 86.06 136.58	agment :	Seq. L G T	y 1314.79 1257.76	y ⁺⁺ 657.90 629.39	y* 1297.76 1240.74	# 12 11 10	zaks	
) 1 2 3 4	s Score Immon. 86.10 30.03 74.06 86.10	 a 86.10 143.12 244.17 357.25 	a ⁺⁺ 43.55 72.06 122.59 179.13	(Bold P	b 114.09 171.11 272.16 385.25	/89 fr b ⁺⁺ 57.55 86.06 136.58 193.13	agment :	Seq. L G T L	y 1314.79 1257.76 1156.72	y ⁺⁺ 657.90 629.39 578.86	y* 1297.76 1240.74 1139.69	# 12 11 10 9	zaks	
9 n # 1 2 3 4 5	s Score Immon. 86.10 30.03 74.06 86.10 102.06	e 55 M a 86.10 143.12 244.17 357.25 486.29	a ⁺⁺ 43.55 72.06 122.59 179.13 243.65	(Bold F	b 114.09 171.11 272.16 385.25 514.29	/89 fr b ⁺⁺ 57.55 86.06 136.58 193.13 257.65	b*	Seq. L G T L E	y 1314.79 1257.76 1156.72 1043.63	y ⁺⁺ 657.90 629.39 578.86 522.32	y* 1297.76 1240.74 1139.69 1026.61	# 12 11 10	zaks	
on	s Score Immon. 86.10 30.03 74.06 86.10 102.06 101.11	: 55 M 86.10 143.12 244.17 357.25 486.29 614.39	atches a ⁺⁺ 43.55 72.06 122.59 179.13 243.65 307.70	(Bold F	b 114.09 171.11 272.16 385.25 514.29 642.38	<pre>/89 fr b++ 57.55 86.06 136.58 193.13 257.65 321.70</pre>	b*	Seq. L G T L E K	y 1314.79 1257.76 1156.72 1043.63 914.59	y ⁺⁺ 657.90 629.39 578.86 522.32 457.80	y* 1297.76 1240.74 1139.69 1026.61 897.56	# 12 11 10 9 8 7	zaks	
2 3 4 5 6 7	s Score Immon. 86.10 30.03 74.06 86.10 102.06 101.11 87.06	: 55 M 86.10 143.12 244.17 357.25 486.29 614.39 728.43	atches a ⁺⁺ 43.55 72.06 122.59 179.13 243.65 307.70 364.72	(Bold F a* 	b 114.09 171.11 272.16 385.25 514.29 642.38 756.43	<pre>/89 fr b⁺⁺ 57.55 86.06 136.58 193.13 257.65 321.70 378.72</pre>	agment : b* 625.36 739.40	Seq. L G L L E K N	y 1314.79 1257.76 1156.72 1043.63 914.59 786.49	y ⁺⁺ 657.90 629.39 578.86 522.32 457.80 393.75	y* 1297.76 1240.74 1139.69 1026.61 897.56 769.47	# 12 11 10 9 8 7 6	taks	
<pre>m # 1 2 3 4 5 6 7 8</pre>	s Score Immon. 86.10 30.03 74.06 86.10 102.06 101.11 87.06 101.07	: 55 M	atches a ⁺⁺ 43.55 72.06 122.59 179.13 243.65 307.70 364.72 428.75	(Bold F a* 	b 114.09 171.11 272.16 385.25 514.29 642.38 756.43 884.48	b++ 57.55 86.06 136.58 193.13 257.65 321.70 378.72 442.75	agment : b* 625.36 739.40 867.46	Seq. L G T L E K N	y 1314.79 1257.76 1156.72 1043.63 914.59 786.49 672.45	y ⁺⁺ 657.90 629.39 578.86 522.32 457.80 393.75 336.73	y* 1297.76 1240.74 1139.69 1026.61 897.56 769.47 655.43	# 12 11 10 9 8 7 6 5	zaks	
<pre>pn # 1 2 3 4 5 6 7 8 9</pre>	S Score Immon. 86.10 30.03 74.06 86.10 102.06 101.11 87.06 101.07 101.11	: 55 M 86.10 143.12 244.17 357.25 486.29 614.39 728.43 856.49 984.58	atches a ⁺⁺ 43.55 72.06 122.59 179.13 243.65 307.70 364.72 428.75 492.80	(Bold F a* 	b 114.09 171.11 272.16 385.25 514.29 642.38 756.43 884.48 1012.58	b++ 57.55 86.06 136.58 193.13 257.65 321.70 378.72 442.75 506.79	agment : b* 625.36 739.40 867.46 995.55	Seq. G T L E K Q K	y 1314.79 1257.76 1156.72 1043.63 914.59 786.49 672.45 544.39	y ⁺⁺ 657.90 629.39 578.86 522.32 457.80 393.75 336.73 272.70	y* 1297.76 1240.74 1139.69 1026.61 897.56 769.47 655.43 527.37	# 12 11 10 9 8 7 6 5 4	zaks	
n	S Score Immon. 86.10 30.03 74.06 86.10 102.06 101.11 87.06 101.07 101.11 101.11	: 55 M 86.10 143.12 244.17 357.25 486.29 614.39 728.43 856.49 984.58 1112.68	atches a ⁺⁺ 43.55 72.06 122.59 179.13 243.65 307.70 364.72 428.75 492.80 556.84	(Bold F a* 	b 114.09 171.11 272.16 385.25 514.29 642.38 756.43 884.48 1012.58 1140.67	b++ 57.55 86.06 136.58 193.13 257.65 321.70 378.72 442.75 506.79 570.84	agment : b* 625.36 739.40 867.46 995.55 1123.65	Seq. L G T L E K N Q K K	y 1314.79 1257.76 1156.72 1043.63 914.59 786.49 672.45 544.39 416.30	y ⁺⁺ 657.90 629.39 578.86 522.32 457.80 393.75 336.73 272.70 208.65	y* 1297.76 1240.74 1139.69 1026.61 897.56 769.47 655.43 527.37 399.27	# 12 11 10 9 8 7 6 5 4 3	zaks	
<pre>m # 1 2 3 4 5 6 7 8</pre>	S Score Immon. 86.10 30.03 74.06 86.10 102.06 101.11 87.06 101.07 101.11 101.11	: 55 M 86.10 143.12 244.17 357.25 486.29 614.39 728.43 856.49 984.58 1112.68	atches a ⁺⁺ 43.55 72.06 122.59 179.13 243.65 307.70 364.72 428.75 492.80 556.84	(Bold F a* 	b 114.09 171.11 272.16 385.25 514.29 642.38 756.43 884.48 1012.58 1140.67	b++ 57.55 86.06 136.58 193.13 257.65 321.70 378.72 442.75 506.79 570.84	agment : b* 625.36 739.40 867.46 995.55 1123.65	Seq. G T L E K Q K	y 1314.79 1257.76 1156.72 1043.63 914.59 786.49 672.45 544.39 416.30	y ⁺⁺ 657.90 629.39 578.86 522.32 457.80 393.75 336.73 272.70 208.65 144.61	y* 1297.76 1240.74 1139.69 1026.61 897.56 769.47 655.43 527.37	# 12 11 10 9 8 7 6 5 4 3	zaks	

Here's a good example.

A run of 9 Y ions. Who wants to tell me that this could never happen by chance? And yet the score is below threshold!

OK, now lets take a look at a different match

⁼ile		ch Results jew F <u>a</u> voi		View - Mici	rosoft Inte	ernet Exp	lorer									
				Search	Gel Esucrito		toru I EL	- 6		Bouror	marks 🎼	A '	×			
										-			7c1422899&px=1		•	- R
	se le na	p.//www.inc	scixscience	steomyegiype		pinioye	33(3)200000	2071 11	icoba.aacoq	der y=3501	IC-TOINGSX	-gi 70] (r
					-9(8)											
					9(7)											
			~		i	â										
	~		-y(4)	(9)h												
	- 40	8		5 5		(01)										
	a(2) - y(1)	a(4) 				- y(10)	y(11)									
		a.				, n.,	5									
		h h h h h h h h h h h h h h h h h h h	للسف الحس	المرجعة الأراقية	السالي											
5		400		800		1200		1600		2000						
-																
				utral pe												
				utral pe (<mark>Bold F</mark>				ions	using 3	9 most	intense	e pe	aks			
n							agment :	ions Seq.	using 3	9 most	intense y*	e pe #	aks			
n :	s Score	: 83 M	atches	(Bold P	led): 20)/87 fr b ⁺⁺	agment :		-			_	aks			
n	s Score Immon.	a 86.10	atches a ⁺⁺ 43.55	(Bold P	b 114.09)/87 fr b ⁺⁺	agment :	Seq.	У	y ⁺⁺		# 12	aks			
n: [s Score Immon. 86.10	a 86.10 173.13	atches a ⁺⁺ 43.55 87.07	(Bold P	b 114.09 201.12	b ⁺⁺ 57.55	agment : b*	Seq. I	y 1314.70	y ++ 657.85	y*	# 12 11	aks			
n: L 2	s Score Immon. 86.10 60.04 44.05	a 86.10 173.13 244.17	atches a ⁺⁺ 43.55 87.07 122.59	(Bold P	b 114.09 201.12 272.16	b ⁺⁺ 57.55 101.07	agment : b*	Seq. I S	y 1314.70 1227.67	y ⁺⁺ 657.85 614.34	y* 1297.68	# 12 11 10	aks			
n: L 2 3	s Score Immon. 86.10 60.04 44.05 86.10	a 86.10 173.13 244.17	atches 43.55 87.07 122.59 179.13	(Bold P	b 114.09 201.12 272.16 385.25	b ⁺⁺ 57.55 101.07 136.58	b*	Seq. I S A	y 1314.70 1227.67 1156.63	y ⁺⁺ 657.85 614.34 578.82	y* 1297.68 1210.64	# 12 11 10 9	aks			
n: L 2 5	s Score Immon. 86.10 60.04 44.05 86.10 102.06	a 86.10 173.13 244.17 357.25	atches a ⁺⁺ 43.55 87.07 122.59 179.13 243.65	(Bold F	b 114.09 201.12 272.16 385.25 514.29	b ⁺⁺ 57.55 101.07 136.58 193.13	b*	Seq. I S A L	y 1314.70 1227.67 1156.63 1043.55	y ⁺⁺ 657.85 614.34 578.82 522.28	y* 1297.68 1210.64 1139.61	# 12 11 10 9 8	aks			
n 1 2 3 4 5	s Score Immon. 86.10 60.04 44.05 86.10 102.06 102.06	a 86.10 173.13 244.17 357.25 486.29 615.34	atches a ⁺⁺ 43.55 87.07 122.59 179.13 243.65 308.17	(Bold F	b 114.09 201.12 272.16 385.25 514.29	b ⁺⁺ 57.55 101.07 136.58 193.13 257.65 322.17	b*	Seq. I S A L E E	y 1314.70 1227.67 1156.63 1043.55 914.51	y ⁺⁺ 657.85 614.34 578.82 522.28 457.76	y* 1297.68 1210.64 1139.61 1026.52	# 12 11 10 9 8 7	aks			
n L 2 3 4 5 5 7	s Score Immon. 86.10 60.04 44.05 86.10 102.06 102.06 102.06 101.07	a 86.10 173.13 244.17 357.25 486.29 615.34 743.39	atches a ⁺⁺ 43.55 87.07 122.59 179.13 243.65 308.17 372.20	(Bold F	b 114.09 201.12 272.16 385.25 514.29 643.33 771.39	b/87 fr b ⁺⁺ 57.55 101.07 136.58 193.13 257.65 322.17 386.20	agment :	Seq. I S A L E E Q	y 1314.70 1227.67 1156.63 1043.55 914.51 785.46	y ⁺⁺ 657.85 614.34 578.82 522.28 457.76	y* 1297.68 1210.64 1139.61 1026.52 897.48 768.44	# 12 11 10 9 8 7 6	aks			
n 2 3 4 5 7 3	 Score Immon. 86.10 60.04 44.05 86.10 102.06 102.06 101.07 86.10 	a 86.10 173.13 244.17 357.25 486.29 615.34 743.39 856.48	atches a ⁺⁺ 43.55 87.07 122.59 179.13 243.65 308.17 372.20 428.74	(Bold F a*	ked): 20 b 114.09 201.12 272.16 385.25 514.29 643.33 771.39 884.47	b ⁺⁺ 57.55 101.07 136.58 193.13 257.65 322.17 386.20 442.74	agment : b*	Seq. I S A L E Q L	y 1314.70 1227.67 1156.63 1043.55 914.51 785.46 657.40	y ⁺⁺ 657.85 614.34 578.82 522.28 457.76 393.24	y* 1297.68 1210.64 1139.61 1026.52 897.48 768.44 640.38	# 12 11 10 9 8 7 6 5	aks			
n L 2 3 4 5 5 7 3	Score Immon. 86.10 60.04 44.05 86.10 102.06 102.06 101.07 86.10 101.07	a 86.10 173.13 244.17 357.25 486.29 615.34 743.39 856.48 984.54	atches a ⁺⁺ 43.55 87.07 122.59 179.13 243.65 308.17 372.20 428.74 492.77	(Bold F a* 	b 114.09 201.12 272.16 385.25 514.29 643.33 771.39 884.47 1012.53	b++ 57.55 101.07 136.58 193.13 257.65 322.17 386.20 442.74 506.77	agment : b* 	Seq. I S A L E Q L Q	y 1314.70 1227.67 1156.63 1043.55 914.51 785.46 657.40 544.32	y ⁺⁺ 657.85 614.34 578.82 522.28 457.76 393.24 329.21	y* 1297.68 1210.64 1139.61 1026.52 897.48 768.44 640.38 527.29	# 12 11 10 9 8 7 6 5 4	aks			
n 1 2 3 4 5 5 7 3 9 0	Score Immon. 86.10 60.04 44.05 86.10 102.06 102.06 101.07 86.10 101.07 101.07	a 86.10 173.13 244.17 357.25 486.29 615.34 743.39 856.48 984.54 1112.60	atches a ⁺⁺ 43.55 87.07 122.59 179.13 243.65 308.17 372.20 428.74 492.77 556.80	(Bold F a* 	b 114.09 201.12 272.16 385.25 514.29 643.33 771.39 884.47 1012.53 1140.59	b/87 fr b ⁺⁺ 57.55 101.07 136.58 193.13 257.65 322.17 386.20 442.74 506.77 570.80	agment : b* 	Seq. I S A L E Q L Q Q Q	y 1314.70 1227.67 1156.63 1043.55 914.51 785.46 657.40 544.32 416.26	y ⁺⁺ 657.85 614.34 578.82 522.28 457.76 393.24 329.21 272.66	y* 1297.68 1210.64 1139.61 1026.52 897.48 768.44 640.38 527.29 399.24	# 12 11 10 9 8 7 6 5 4 3	aks			
n 1 2 3 4 5 5 5 7 8 9	Score Immon. 86.10 60.04 44.05 86.10 102.06 102.06 101.07 86.10 101.07 101.07	a 86.10 173.13 244.17 357.25 486.29 615.34 743.39 856.48 984.54 1112.60	atches a ⁺⁺ 43.55 87.07 122.59 179.13 243.65 308.17 372.20 428.74 492.77 556.80	(Bold F a* 	b 114.09 201.12 272.16 385.25 514.29 643.33 771.39 884.47 1012.53 1140.59	b/87 fr b ⁺⁺ 57.55 101.07 136.58 193.13 257.65 322.17 386.20 442.74 506.77 570.80	agment : b* 	Seq. I S A L E Q L Q Q Q	y 1314.70 1227.67 1156.63 1043.55 914.51 785.46 657.40 544.32 416.26 288.20	y ⁺⁺ 657.85 614.34 578.82 522.28 457.76 393.24 329.21 272.66 208.63	y* 1297.68 1210.64 1139.61 1026.52 897.48 768.44 640.38 527.29 399.24 271.18	# 12 11 10 9 8 7 6 5 4 3 2	aks			

Now we have a run of 11 y ions and a higher score, above the significance threshold. These are not similar sequences with the same set of mass matches.

				net Explorer						
le <u>E</u> dit	⊻iew Fg	vorites	<u>T</u> ools <u>H</u> elp							
Back 🔻	\Rightarrow \cdot \otimes	1	🛛 🧟 Search	😹 Favorites	History	B- 6) 🖬 🖹	Pow	rmarks 膬 \land 🎋	
iress 🙋	http://www	.matrixscie	nce.com/cgi/i	master_results.	pl?file=/data/2	:0000828/	FTmcobu.da	t		• 🔊
uery	Ubserv	red B	ir(expt)	Mr(calc) Delta	Miss	Score	Rank	Peptide	
51	1057.0	05 2	2112.09	2112.13	-0.04	0	111	1	ALMLQGVD ILAD AVAVTMGPK	
<u>52</u>	1065.0	04 2	2128.06	2128.13	-0.06	0	(60)	1	ALMLQGVDILADAVAVTMGPK + Oxidation (M)	
<u>53</u>				2128.13			(27)	1	ALMLQGVDILADAVAVTMGPK + Oxidation (M)	
<u>54</u>	1073.0	05 2	144.08	2144.12	-0.04	0	(61)	1	ALMLQGVDILADAVAVTMGPK + 2 Oxidation (M)	
zd9			_fetal_h			apiens			c hed: 1 IGE:357351 5' similar to gb:X14487_	
Query) Mr(cal			s Score	Rank	Peptide	
33 11-	714	. 36	1426.71	1426.7	8 -0.0	5 0	83	1	ISALEEQLQQIR	
173 ms 234 v1 264 vs 285 vv 405 ms 405	82.6 82.6 54.9 54.5 50.2 44.6 44.1 41.7 40.2	Delta -0.06 -0.10 -0.15 -0.14 0.01 -0.10 -0.17 -0.05 -0.08 -0.20			1422899	ISALEEN GTLEKN IASLEQN TGLEEC SISKKIC SLAEIKN SSPEKJ	QLQQIR KLQQIR NQKKLR KLEKRI GALHTWT QEEPRI KLKELR ARTWPR	Ched: IA clo itched IA clo itched IA clo ched: IA clo ched: IA clo ched: IA clo ched:	E IMAGE:607989 5' similar to gb:L0 1 E IMAGE:975759 5' similar to gb:L0 1 E IMAGE:1151658 5' similar to gb:L 1 E IMAGE:1229783 5' similar to gb:L 1 1 E IMAGE:607989 5' similar to gb:L0 1	
	3b10.r1 329	Strata 1 Soares	gene mou: Mass: 149 mouse p:	970 Tota 3NMF19.5 M	937313) M l score: Mus muscul	us mus B1 Pe j us cDN.	- culus cl p tides r A clone	natched DNA clo natched IMAGE:	ne IMAGE:1150459 5' similar to gb:L 1 173792 5' similar to gb:L00193 Mous	
			Mass: 17	ouz Tota	1 score:					
mi89		Soares	mouse en	mbryo NbME	13.5 14.5	Mus m	usculus	CDNA C	one IMAGE:479475 5' similar to gb:	•

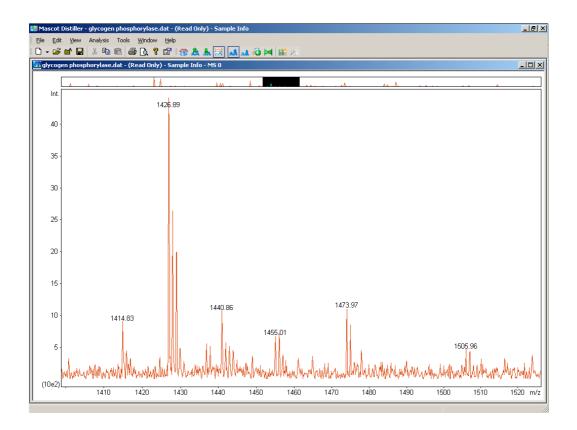
The threshold was high because this was an EST search. However, this doesn't change the fact that many people would accept the first match until shown the second.

Our subjective judgement can be misleading

I'm not suggesting that Mascot is infalible, far from it. However, if you choose to disregard the score, you should look very carefully at the match and, ideally, have some additional evidence for it being correct.

6. Peak detection, peak detection, peak detection

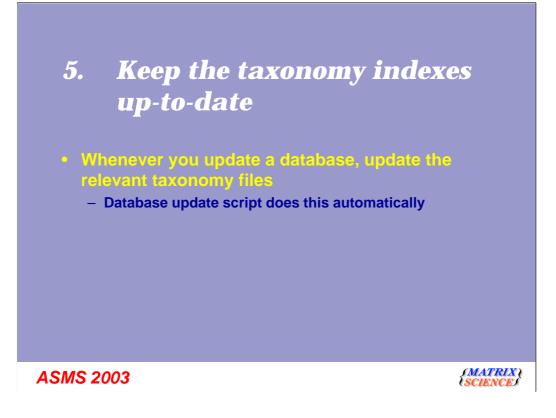
- Especially critical for Peptide Mass Fingerprints
- Time domain summing of LC-MS/MS data is very important
- Throw out low mass precursors in MS/MS


ASMS 2003

If you ask an estate agent (a realtor) in the UK what determines the price of property, they'll probably reply location, location, and location.

Well, in many ways, the quality of a Mascot result depends on peak detection, peak detection, peak detection.

<read from slide>



There is a world of difference between a good quality peak list, as you might expect from a piece of software like - random example - Mascot Distiller, and a poor quality peak list, where every spike and glitch on the baseline has been added to the peak list

	ck 🕶 🗏) i 🖉 🖉 🖌	ථු 📿 Search	🛐 Favorites 🛛 🕄	History	à- 🎒		Powe	ermarks 🁫 \land 🎋	
lres	s 🦉 hti	tp://www.matrixs	cience.com/cgi/ma	ster_results.pl?file	=/data/200	130602/F	TncCxcn.da	t&REPTYP	E=peptide	• e
		n								
epτ	1ae 51	ummary Ro	eport							
ritc	h to Pr	otein Summar	y Report							
				. ana sa na ana						
cr	eate a t	bookmark for	this report, rig	ht click this link	: <u>Peptide</u> :	Summar	ry Kepor	t (M. Mo	oss/D. Becherer Sample)	
Sel	ect All	Select N	None	Search Selecte	d	Error	tolerant			
_							torer and			
	i 4433		Mass: 2		1 score:	320	Peptid	les mat	ched: 15	
			alin A (Nat	error toles		ar ou la				
Cn	ieck t	o include (this hit in	error tole	ant sea	ren				
Qu	ıery	Observed	Mr(expt)	Mr(calc)	Delta	Miss	Score	Rank	Peptide	
	27	959.39	958.38	958.51	-0.13	0	(40)	1	LLGLFPDAN	
	28	480.22	958.43	958.51	-0.08	0	43	1	LLGLFPDAN	
							~~		Waawaanaaaaa	
	44	659.76	1317.50	1317.63	-0.13	0	80	1	VSSNGSPQGSSVGR	
	<u>44</u> 52	659.76 524.90	1317.50 1571.67	1317.63 1571.84	-0.13 -0.17	1	80 53	1	VSSNGSPÜGSSVGR VGTAHIIYNSVDKR	
	52	524.90	1571.67	1571.84	-0.17	1	53	1	VGTAHIIYNSVDKR	
	<u>52</u> <u>61</u>	524.90 1051.86	1571.67 2101.70	1571.84 2102.05	-0.17 -0.35	1 0	53 (84)	1 1	VGTAHIIYNSVDKR DLILQGDATTGTDGNLELTR	
	52 61 62	524.90 1051.86 1051.86	1571.67 2101.70 2101.70	1571.84 2102.05 2102.05	-0.17 -0.35 -0.35	1 0 0	53 (84) (51)	1 1 1	VGTAHIIYNSVDKR DLILQGDATTGTDGNLELTR DLILQGDATTGTDGNLELTR	
	52 61 62 63	524.90 1051.86 1051.86 1051.86	1571.67 2101.70 2101.70 2101.71	1571.84 2102.05 2102.05 2102.05	-0.17 -0.35 -0.35 -0.34	1 0 0 0	53 (84) (51) (78)	1 1 1	VGTAHIIYNSVDKR DLILQGDATTGTDGHLELTR DLILQGDATTGTDGHLELTR DLILQGDATTGTDGHLELTR	
	52 61 62 63 64	524.90 1051.86 1051.86 1051.86 1051.86	1571.67 2101.70 2101.70 2101.71 2101.71	1571.84 2102.05 2102.05 2102.05 2102.05	-0.17 -0.35 -0.35 -0.34 -0.34	1 0 0 0	53 (84) (51) (78) (77)	1 1 1 1	VGTAHIIYNSVDKR DLILQGDATTGTDGNLELTR DLILQGDATTGTDGNLELTR DLILQGDATTGTDGNLELTR DLILQGDATTGTDGNLELTR	
	52 61 62 63 64 65	524.90 1051.86 1051.86 1051.86 1051.86 1051.87	1571.67 2101.70 2101.70 2101.71 2101.71 2101.73	1571.84 2102.05 2102.05 2102.05 2102.05 2102.05	-0.17 -0.35 -0.35 -0.34 -0.34 -0.32	1 0 0 0 0	53 (84) (51) (78) (77) 90	1 1 1 1 1	VGTAHIIYNSVDKR DLILQGDATTGTDGHLELTR DLILQGDATTGTDGHLELTR DLILQGDATTGTDGHLELTR DLILQGDATTGTDGHLELTR DLILQGDATTGTDGHLELTR	
	52 61 63 64 65 66	524.90 1051.86 1051.86 1051.86 1051.86 1051.87 701.60	1571.67 2101.70 2101.71 2101.71 2101.71 2101.73 2101.78	1571.84 2102.05 2102.05 2102.05 2102.05 2102.05 2102.05	-0.17 -0.35 -0.35 -0.34 -0.34 -0.32 -0.27	1 0 0 0 0 0	53 (84) (51) (78) (77) 90 (56)	1 1 1 1 1 1	VGTAHIITNSVDKR DLILQGDATTGTDGNLELTR DLILQGDATTGTDGNLELTR DLILQGDATGTDGNLELTR DLILQGDATTGTDGNLELTR DLILQGDATGTDGNLELTR DLILQGDATGTDGNLELTR	
	52 61 62 63 64 65 66 67	524.90 1051.86 1051.86 1051.86 1051.86 1051.87 701.60 701.60	1571.67 2101.70 2101.71 2101.71 2101.71 2101.73 2101.78 2101.79	1571.84 2102.05 2102.05 2102.05 2102.05 2102.05 2102.05 2102.05	-0.17 -0.35 -0.35 -0.34 -0.34 -0.32 -0.27 -0.26	1 0 0 0 0 0 0 0	53 (84) (51) (78) (77) 90 (56) (52)	1 1 1 1 1 1 1	VGTAHIITNSVDKR DLILQGDATTGTDGHLELTR DLILQGDATTGTDGHLELTR DLILQGDATTGTDGHLELTR DLILQGDATTGTDGHLELTR DLILQGDATTGTDGHLELTR DLILQGDATTGTDGHLELTR	
	52 61 62 63 64 65 66 67 68	524.90 1051.86 1051.86 1051.86 1051.86 1051.87 701.60 701.60 701.62	1571.67 2101.70 2101.71 2101.71 2101.71 2101.73 2101.78 2101.79 2101.82	1571.84 2102.05 2102.05 2102.05 2102.05 2102.05 2102.05 2102.05 2102.05	-0.17 -0.35 -0.35 -0.34 -0.34 -0.32 -0.27 -0.26 -0.23	1 0 0 0 0 0 0 0 0	53 (84) (51) (78) (77) 90 (56) (52) (46)	1 1 1 1 1 1 1 1	VGTAHITYNSVDKR DLILQGDATTGTDGHLELTR DLILQGDATTGTDGHLELTR DLILQGDATTGTDGHLELTR DLILQGDATTGTDGHLELTR DLILQGDATTGTDGHLELTR DLILQGDATTGTDGHLELTR DLILQGDATTGTDGHLELTR	
	52 61 62 63 64 65 66 67 68 68 69	524.90 1051.86 1051.86 1051.86 1051.87 701.60 701.60 701.62 1051.93	1571.67 2101.70 2101.70 2101.71 2101.71 2101.73 2101.78 2101.79 2101.82 2101.85	1571.84 2102.05 2102.05 2102.05 2102.05 2102.05 2102.05 2102.05 2102.05 2102.05	-0.17 -0.35 -0.35 -0.34 -0.32 -0.27 -0.26 -0.23 -0.20	1 0 0 0 0 0 0 0 0 0	53 (84) (51) (78) (77) 90 (56) (52) (46) (67)	1 1 1 1 1 1 1 1 1	VGTAHITINSVDKR DLILQGDATTGTDGHLELTR DLILQGDATTGTDGHLELTR DLILQGDATTGTDGHLELTR DLILQGDATTGTDGHLELTR DLILQGDATTGTDGHLELTR DLILQGDATTGTDGHLELTR DLILQGDATTGTDGHLELTR DLILQGDATTGTDGHLELTR	

In the case of MS/MS data, noise peaks aren't such a problem, because Mascot itertively determined which are signal and which are noise. However, time domain processing of LC-MS/MS data is very important.

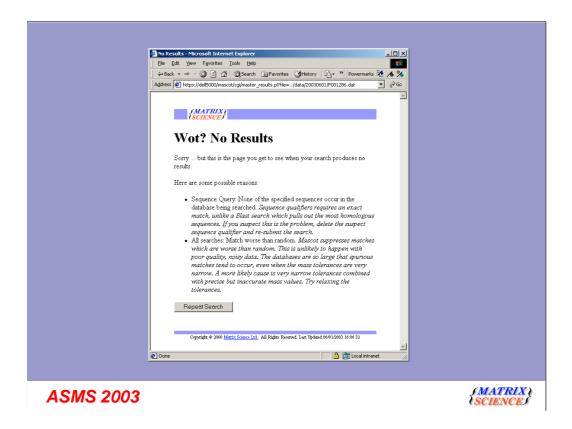
This example shows what you don't want to see - the same peptide found over and over again. If all these spectra could be summed together, the signal to noise, and hence the Mascot score, would be greatly improved

At number 5, one for the Administrators of in-house Mascot servers: Keep your taxonomy indexes up-to-date <read from slide>

<pre>iback</pre>	<u>File Edit View Favorites Tools Help</u>			
<pre>2#ses@ http://www.matrixsdence.com/v-cg/me-status.exe?0 WLASCOT search status page Fersion 1.9.05a - Jing 5 nodes and 10 processors. [2 searches running] Search log_monitor log_error log_Error message descriptions modelst htt Do not auto refresh this page ame = NCBInr Family = / home/matrix/site/sequence/NCBInr/curre 3 172665 ame = NCBInr Z0030516.fastaPathname = / home/matrix/site/sequence/NCBInr/curre 4 57360 asta 5 27025 6 16074 5 27025 6 16074 5 27025 6 16074 5 27025 6 16074 7 6549 8 3663 9 2013 1 1 274 1 886 1 2744 1 886 1 2744 1 886 1 2744 1 886 1 2744 1 886 1 2744 1 886 1 2744 1 3 511 1 4 470 ame = OWL Family = /home/matrix/site/sequence/NCBInr/curre 1 886 1 2744 1 5 511 1 4 470 ame = OWL Family = /home/matrix/site/sequence/OWI/current/OWL_31.4.fasta 5 tatus 1 In use 5 tatistics Unidentified taxonomy 5 tate Time = Sun Jun 1 04:29:02 # searches = 0 emmapped = YES Request to mem map = YES Request unmap = N0 Mem locked = N0 1 asta 5 tatus = In use 5 tatistics Unidentified taxonomy 1 4 470 ame = OWL Family = /home/matrix/site/sequence/OWI/current/OWL_31.4.fasta 1 1 asta 5 tatus 2 In use 5 tatistics Unidentified taxonomy 5 tate Time = Sun Mun 2 515:47:34 # searches = 0 2 mmapped = YES Request to mem map = YES Request unmap = N0 Mem locked = N0 1 asta 5 tatus 2 In use 5 tatistics Unidentified taxonomy 5 In use 5 tatistics Unidentified taxonomy 5 tate Time = Sun Mun 2 515:47:34 # searches = 0 2 mmapped = YES Request to mem map = YES Request unmap = N0 Mem locked = N0 1 asta 5 tatus 5 In use 5 tatistics Unidentified taxonomy 5 In use 5 In use 5 tatistics Unidentified taxonomy 5 In use 5 In use 5 Tatistics Unidentified taxonomy 5 In use 5 In u</pre>				
AASCOT search status page Fersion 1.9.05a- Jang 5 nodes and 10 processors. [2 searches running] Search log monitor log error log Error message descriptions inodelist hat Do not auto refresh this page ame = NCBInr Family = /home/matrix/site/sequence/NCBInr/currer ilename = NCBInr_20030516.fastaPathname = /home/matrix/site/sequence/NCBInr/currer ites Sun Jun 1 04:29:00 # searches = 0 em mapped = NO ER received to mem map = YES Request unmap = NO Mem locked = NO umber of threads = 1 Current = NO ame = NCBInr_20030530.fastaPathname = /home/matrix/site/sequence/NCBInr/currer ites Sun Jun 1 04:29:00 # searches = 0 Estimation = NCBInr_20030530.fastaPathname = /home/matrix/site/sequence/NCBInr/currer ites Sun Jun 1 04:29:00 # searches = 0 Estimation = NCBInr_20030530.fastaPathname = /home/matrix/site/sequence/NCBInr/currer ites Sun Jun 1 04:29:02 # searches = 0 Estimation = NCBInr_20030530.fastaPathname = /home/matrix/site/sequence/NCBInr/currer ites Sun Jun 1 04:29:02 # searches = 0 Estimation = 1 Current = YES mame = OWL = family = /home/matrix/site/sequence/OWI/current/OWL_*.fasta iterame = OWL = family = /home/matrix/site/sequence/OWI/current/OWL_*.fasta iterame = Sun Jun 25 15:47:34 # searches = 0 Estimation = 1 Current = YES mame = NEDB = Family = /home/matrix/site/sequence/MSDB/current/MSDB_*.fasta iterame = MSDB_20030428.fasta Pathname = /home/matrix/site/sequence/MSDB/current/MSDB_*.fasta iterame = MSDB_20030428.fasta Pathname = /home/matrix/site/sequence/MSDB/current/MSDB_*.fasta iterame = MSDB_20030428.fasta Pathname = /home/matrix/site/sequence/MSDB/current/MSDB_20030428.fasta iterame = MSDB_20030428.fasta Pathname = /home/matrix/site/sequence/MSDB/current/MSDB_20030428.fasta iter				
<pre>Farson 1.9.05a - Sing 5 nodes and 10 processors. [2 searches running] Search log monitor log error log Error message descriptions nodelist tot Do not auto refresh this page ame = NCBInr</pre>	ddress 🙋 http://www.matrixscience.com/x-cgi/ms-status.exe?0			<u> </u>
<pre>Farson 1.9.05a - Sing 5 nodes and 10 processors. [2 searches running] Search log monitor log error log Error message descriptions nodelist tot Do not auto refresh this page ame = NCBInr</pre>				
<pre>Tang 5 nodes and 10 processors. [2 searches running] Starch log monitor log error log Error message descriptions nodelist tat Do not auto refresh this page Tax IDs Count Tax IDs C</pre>	MASCOT search status page			
<pre>Tang 5 nodes and 10 processors. [2 searches running] Starch log monitor log error log Error message descriptions nodelist tat Do not auto refresh this page Tax IDs Count Tax IDs C</pre>	I U			
Sarch log monitor log error log Error message descriptions modelist tat Do not auto refresh this page Tax IDs Count Sarch log monitor log error log Error message descriptions modelist tat Do not auto refresh this page Tax IDs Count amme = MCBInr Family = /home/matrix/site/sequence/NCBInr/curr 1816669 ilename = NCBInr_20030516.fastaPathname = /home/matrix/site/sequence/NCBInr/curr 172605 tatus = Not in use Statistics Unidentified taxonomy 5 27025 tate Time = Sun Jun 1 04:29:00 # searches = 0 6 16074 meme = NCBInr_20030530.fastaPathname = /home/matrix/site/sequence/NCBInr/curr 9 2013 ilename = NCBInr_20030530.fastaPathname = /home/matrix/site/sequence/NCBInr/curr 10 1274 ilename = NCBInr_20030530.fastaPathname = /home/matrix/site/sequence/NCBInr/curr 10 1274 itename = NCBInr_20030530.fastaPathname = /home/matrix/site/sequence/NCBInr/curr 10 1274 itename = NCBInr_20030530.fastaPathname = /home/matrix/site/sequence/Oul/current/oul_*.fasta 11 8866 itename = Sun Jun 1 04:29:02 # searches = 0 11 866 mame = OWL	/ersion: 1.9.05a -			
Search tog monator	Jsing 5 nodes and 10 processors. [2 searches running]			
<pre>dif</pre>	Search log monitor log error log Error message descriptions nodelist txt. Do not auto refresh this page		nt	
<pre>ame = NCBINT</pre>			-	
<pre>ame = NCBInrFamily = /home/matrix/site/sequence/NCBInr/curred 3 172665 illename = NCBInr_20030516.fastaPathname = /home/matrix/site/sequence/NCBInr/curred 4 57360 fasta tatus = Not in use</pre>				
<pre>ilename = NCBInr_20030516.fastaPathame = /home/matrix/site/sequence/NCBInr/curr tatus = Not in use Statistics Unidentified taxonomy tatus = Not in use Statistics Unidentified taxonomy immber of threads = 1 Current = NO mamber of threads = 1 Current = NO mamber of threads = 1 Current = NO = NCBInrFamily = /home/matrix/site/sequence/NCBInr/current ilename = NCBInr_20030530.fastaPathame = /home/matrix/site/sequence/NCBInr/current tatus = In use Statistics Unidentified taxonomy immber of threads = 1 Current = NO = NCBInr_20030530.fastaPathame = /home/matrix/site/sequence/NCBInr/current tatus = In use Statistics Unidentified taxonomy immer of threads = 1 Current = YES = Nome/matrix/site/sequence/Owl/current/Owl_*.fasta ilename = OWLFamily = /home/matrix/site/sequence/Owl/current/owl_*1.fasta ilename = OWLFamily = /home/matrix/site/sequence/Owl/current/Owl_*.fasta ilename = OWLFamily = /home/matrix/site/sequence/Owl/current/Owl_*.fasta ilename = NIBB_20030428.fasta Pathame = /home/matrix/site/sequence/NSDB/current/MSDB_*.fasta ilename = MSDB_20030428.fasta Pathame = /home/matrix/site/sequence/MSDB/current/MSDB_*.fasta ilename = MSDB_20030428.fasta Pathame = /home/matrix/site/sequence/MSDB/current/MSDB_20030428.fasta tatus = In use Statistics Unidentified taxonomy tate Time = Sun Jun 1 22:35:02 # searches = 0 emmapped = YES Request to mem map = YES Request unmap = NO Mem locked = YES = mamped = YES Request to mem map = YES Request unmap = NO Mem locked = YES = mamped = YES Request to mem map = YES Request unmap = NO Mem locked = NO umber of threads = 1 Current = YES = mamped = YES Request to mem map = YES Request unmap = NO Mem locked = YES = mamped = YES Request to mem map = YES Request unmap = NO Mem locked = YES = mamped = YES Request to mem map = YES Request unmap = NO Mem locked = YES = mamped = YES Request to mem map = YES Request unmap = NO Mem locked = YES = mamped = YES Request to mem map = YES Request unmap = NO Mem locked = YES = Mamper SES Request to mem map = YES Request unm</pre>	ame = NCBInr Family = /home/matrix/site/sequence/NCBInr/curre			
<pre>tatus = Not in use Statistics Unidentified taxonomy 5 27025 tate Time = Sun Jun 1 04:29:00 # searches = 0 tate Time = Sun Jun 1 04:29:00 # searches = 0 tate Time = NO Request to mem map = YES Request unmap = NO Mem locked = NO tatus = In use</pre>		5 114		
<pre>tate Time = Sun Jun 1 04:29:00 # searches = 0 immapped = NO Request to mem map = YES Request unmap = NO Mem locked = NO 7 6349 ame = NCBInr</pre>		4 575		
<pre>lem mapped = NO Request to mem map = YES Request unmap = NO Mem locked = NO</pre>	tate Time = Sun Jun 1 04:29:00 # searches = 0			
<pre>umber of threads = 1 Current = NO ame = NCBInrFamily = /home/matrix/site/sequence/NCBInr/curre ilename = NCBInr_20030530.fastaPathnee = /home/matrix/site/sequence/NCBInr/curre il 88</pre>				
<pre>ame = NCEInr Family = /home/matrix/site/sequence/NCEInr/currer 9 2013 11ename = NCEInr 20030530.fastaPathapene = /home/matrix/site/sequence/NCEInr/currer 10 1274 1asta 1274 1asta 1274 1asta 1274 1asta 12 744 13 511 14 470 ame = OWL Family = /home/matrix/site/sequence/Owl/current/owl *.fasta 11 ename = OWL</pre>	umber of threads = 1 Current = NO			
<pre>ame = NCBIN_20030530.fastBarthnew = /home/matrix/site/sequence/NCBIN/current/10 1274 tatus = In use Statistics Pridentified taxonomy tate Time = Sun Jun 1 04:29:02 # searches 0</pre>				
<pre>intername = NSDE_200305201285102 # searches = 0 ame = MSDE_20030428.fasta Pathname = /home/matrix/site/sequence/MSDE/current/MSDE_20030428.fasta tatus = In use Statistics Unidentified taxonomy tate Time = Sun Jun 1 04:29:02 # searches = 0 ame = OWL</pre>				
<pre>Solution = 10 Note = 10 Section = 10 Se</pre>			- Iasta	
<pre>iem mapped = YES Request to mem map = YES Request unmap = NO Mem locked = YES imber of threads = 1 Current = YES imber of threads = 1 Current = YES ili 13 511 14 470 iliename = Owl_31.4.fasta Pathname = /home/matrix/site/sequence/Owl/current/Owl_*.fasta iliename = Owl_31.4.fasta Pathname = /home/matrix/site/sequence/Owl/current/Owl_31.4.fasta tatus = In use Statistice Unidentified taxonomy tate Time = Sun May 25 15:47:34 # searches = 0 iem mapped = YES Request to mem map = YES Request unmap = NO Mem locked = NO imber of threads = 1 Current = YES imber of threads = YES imber of threads = YES imber of</pre>		12 744		
<pre>umber of threads = 1 Current = YES 14 470 ame = OWL Family = /home/matrix/site/sequence/Owl/current/Owl*.fasta ilename = Owl_31.4.fasta Pathname Statistics Unidentified taxonomy tate Time = Sun May 25 15:47:34 # searches = 0 em mapped = YES Request to mem map = YES Request unmap = N0 Mem locked = N0 umber of threads = 1 Current = YES ame = MSDB_20030428.fasta Pathname = /home/matrix/site/sequence/MSDB/current/MSDB_*.fasta tatus = In use Statistics Unidentified taxonomy ame = MSDB_20030428.fasta Pathname = /home/matrix/site/sequence/MSDB/current/MSDB_*.fasta tatus = In use Statistics Unidentified taxonomy tate Time = Sun Jun 1 22:35:02 # searches = 0 em mapped = YES Request to mem map = YES Request unmap = N0 Mem locked = YES</pre>		13 511		
<pre>ilename = 0vl_31.4.fasta Pathname = /home/matrix/site/sequence/0vl/current/0vl_31.4.fasta tatus = In use Statistics Unidentified taxonomy tate Time = Sun May 25 15:47:34 # searches = 0 em mapped = YES Request to mem map = YES Request unmap = NO Mem locked = NO umber of threads = 1 Current = YES ame = MSDB_20030428.fasta Pathname = /home/matrix/site/sequence/MSDB/current/MSDB_*.fasta ilename = MSDB_20030428.fasta Pathname = /home/matrix/site/sequence/MSDB/current/MSDB_20030428.fasta tatus = In use Statistics Unidentified taxonomy tate Time = Sun Jun 1 22:35:02 # searches = 0 em mapped = YES Request to mem map = YES Request unmap = NO Mem locked = YES</pre>	Number of threads = 1 Current = YES	14 470		
<pre>ilename = 0vl_31.4.fasta Pathname = /home/matrix/site/sequence/0vl/current/0vl_31.4.fasta tatus = In use Statistics Unidentified taxonomy tate Time = Sun May 25 15:47:34 # searches = 0 em mapped = YES Request to mem map = YES Request unmap = NO Mem locked = NO umber of threads = 1 Current = YES ame = MSDB_20030428.fasta Pathname = /home/matrix/site/sequence/MSDB/current/MSDB_*.fasta ilename = MSDB_20030428.fasta Pathname = /home/matrix/site/sequence/MSDB/current/MSDB_20030428.fasta tatus = In use Statistics Unidentified taxonomy tate Time = Sun Jun 1 22:35:02 # searches = 0 em mapped = YES Request to mem map = YES Request unmap = NO Mem locked = YES</pre>				
<pre>ilename = 0vl_31.4.fasta Pathname = /home/matrix/site/sequence/0vl/current/0vl_31.4.fasta tatus = In use Statistics Unidentified taxonomy tate Time = Sun May 25 15:47:34 # searches = 0 em mapped = YES Request to mem map = YES Request unmap = NO Mem locked = NO umber of threads = 1 Current = YES ame = MSDB_20030428.fasta Pathname = /home/matrix/site/sequence/MSDB/current/MSDB_*.fasta ilename = MSDB_20030428.fasta Pathname = /home/matrix/site/sequence/MSDB/current/MSDB_20030428.fasta tatus = In use Statistics Unidentified taxonomy tate Time = Sun Jun 1 22:35:02 # searches = 0 em mapped = YES Request to mem map = YES Request unmap = NO Mem locked = YES</pre>				
<pre>tates = In use Statistics Unidentified taxonomy tate Time = Sun May 25 15:47:34 # searches = 0 enmapped = YES Request to mem map = YES Request unmap = NO Mem locked = NO umber of threads = 1 Current = YES ame = MSDB Family = /home/matrix/site/sequence/MSDB/current/MSDB_*.fasta ilename = MSDB Tame = /home/matrix/site/sequence/MSDB/current/MSDB_20030428.fasta tatus = In use Statistics Unidentified taxonomy tate Time = Sun Jun 1 22:35:02 # searches = 0 enmapped = YES Request to mem map = YES Request unmap = NO Mem locked = YES</pre>				
<pre>tate Time = Sun May 25 15:47:34 # searches = 0 'em mapped = YES Request to mem map = YES Request unmap = NO Mem locked = NO umber of threads = 1 Current = YES make = MSDE_20030428.fasta Pathname = /home/matrix/site/sequence/MSDE/current/MSDE_20030428.fasta tatus = In use Statistics Unidentified taxonomy tate Time = Sun Jun 1 22:35:02 # searches = 0 em mapped = YES Request to mem map = YES Request unmap = NO Mem locked = YES</pre>		001_31.4.1ast	a	
<pre>iem mapped = YES Request to mem map = YES Request unmap = N0 Mem locked = N0 umber of threads = 1 Current = YES umber of threads = 1 Current = YES imme = MSDB</pre>				
umber of threads = 1 Current = YES ame = <u>HSDB</u> Family = /home/matrix/site/sequence/HSDB/current/HSDB_*.fasta ilename = MSDB_20030428.fasta Pathname = /home/matrix/site/sequence/MSDB/current/MSDB_20030428.fasta tatus = In use <u>Statistics Unidentified taxonomy</u> tate Time = Sun Jun 1 22:35:02 # searches = 0 en mapped = YES Request to mem map = YES Request unmap = NO Mem locked = YES				
ilename = MSDB_20030428.fasta Pathname = /home/matrix/site/sequence/MSDB/current/MSDB_20030428.fasta tatus = In use <u>Statistics</u> <u>Unidentified taxonomy</u> tate Time = Sun Jun 1 22:35:02 # searches = 0 em mapped = YES Request to mem map = YES Request unmap = NO Mem locked = YES	Number of threads = 1 Current = YES			
ilename = MSDB_20030428.fasta Pathname = /home/matrix/site/sequence/MSDB/current/MSDB_20030428.fasta tatus = In use <u>Statistics</u> <u>Unidentified taxonomy</u> tate Time = Sun Jun 1 22:35:02 # searches = 0 em mapped = YES Request to mem map = YES Request unmap = NO Mem locked = YES				
ilename = MSDB_20030428.fasta Pathname = /home/matrix/site/sequence/MSDB/current/MSDB_20030428.fasta tatus = In use <u>Statistics</u> <u>Unidentified taxonomy</u> tate Time = Sun Jun 1 22:35:02 # searches = 0 em mapped = YES Request to mem map = YES Request unmap = NO Mem locked = YES		(WODD + c		
tatus = In use <u>Statistics</u> <u>Unidentified taxonomy</u>				
tate Time = Sun Jun 1 22:35:02		7 nau6_2003042	o.Iasta	
em mapped = YES Request to mem map = YES Request unmap = NO Mem locked = YES				

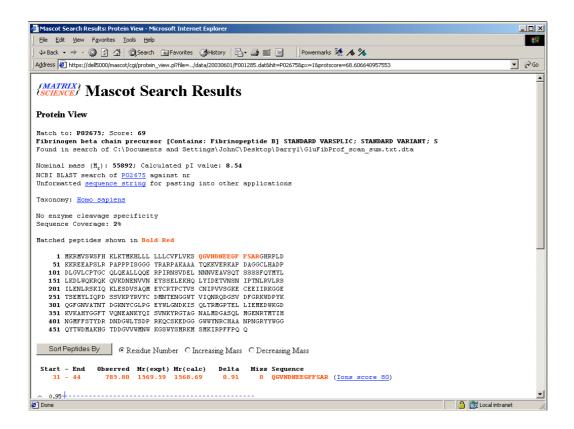
From time to time, its a good idea to check the stats file for each database. It contains lots of useful information, like whether entries contain illegal characters or whether an entry is too long.

It also tells you how good your taxonomy is. Here are the numbers for the nr database on our web site at the end of May. There are 1.4 million entries, but only 1200 have no taxonomy. In other words, better than 99.9% of the entries have a taxonomy assigned. If you look at your stats file and see that (say) 10% of the entries have no taxonomy, that's 10% of the entries that are going to be missed whenever you do a search with taxonomy specified.


4. Remember that enzyme specificity also applies to Sequence Queries

ASMS 2003

Top tip number 4 is Remember that enzyme specificity also applies to Sequence Queries


SCIENCES

One of the most common emails we receive is "Mascot is broken. I did a search for this peptide and I know its in the database but Mascot failed to find it"

For example, here's a search for glu-fib, a very common sequencing standard. The mass is correct and the sequence is correct. But, when we do a search of Swiss-Prot - No results!

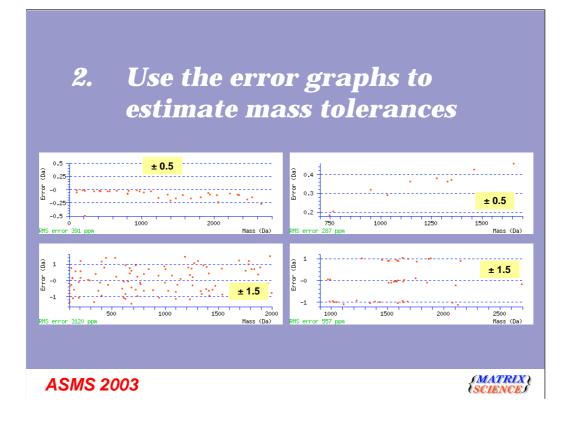
Why

Because glu-fib in Swiss-Prot is not a tryptic peptide. The N-terminus is created by a post-translational cleavage after serine. If you now go back to the search form and select enzyme type none, bingo ... you'll get a match

3. **Don't specify a protein mass** unless essential

- · Cannot guarantee that the mass of the database entry is close to that of the analyte
- Never useful for MS/MS search. Only useful for Peptide Mass Fingerprint when
 - Analyte is small fragment of very large entry
 - Low complexity entry

ASMS 2003


Number 3 is another very common technical support issue: Whether to specify a protein mass

<read from slide>

e <u>E</u> dil	t ⊻iew In	sert F	ormat	<u>T</u> ools Ta	ble \	<u>W</u> indow <u>H</u> elp							
		117%			1 🔲] Close N?	_						
			_				<u> </u>		 				
-				1									
								pgvrweycnl			sleaps	edap	
								tysttvtgrt					
								ycnltqcsda		A	POA	- HI	UMAN:
								tgrtcqawss csdaeqtava					
								awssmtphsh		45	48 A/	A. c	of which
								tavapptvtp					
								phshsrtpey			4218	AA	\ is 37
								tvtpvpslea			e e f c	- 5	- 444
								tpeyypnagl		rep	eats	OT	a 114 AA
								sleapsegap					
								naglimnycr		r	\ringi	le o	lomain
								eqapteqrpq		t var			
								nycrnpdava					
								drpgvqecyh					
								davaapycyt					
								ecyhgngqsy					
								ycytrdpgvr					
								qqsyrqtyst					
								pqvrweycnl					
								tysttvtqrt					
								vcnltqcsda					
								tgrtcgawss					
								csdaeqtava					
								awssmtphsh					
								tavapptvtp					
								phshsrtpey					
								tvtpvpslea					
								tpeyypnagl					
								sleapseqap					
								naglimnycr					
								egaptegrpg					
								nycrnpdava					
								grpgvgecyh					
								davaapycyt					
								ecyhgngqsy					
G 🗉	⊡ 4									-	-		

Here, for example, is human Apolipoprotein a Almost all of this protein is a repeated kringle domain of just 114 residues. Statistically, this protein behaves like a much smaller protein ... for eample, it will produce many fewer unique tryptic peptides than you would expect from its size. If you had a peptide mass map of this protein, it would be very, very difficult to get a match without specifiying a small protein mass.

This, and the case where the experimental protein is a very small fragment of the database entry are the times you need to use SEG. Otherwise, much better to leave the protein mass open

Number 2 is a reminder to use the error graphs to estimate mass tolerances

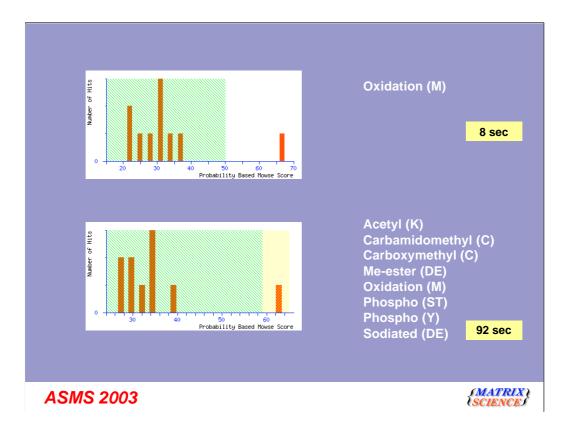
1. This example is fine, the mass errors are well within the specified tolerance of +/- 0.5. You could probably increase the score slightly by going to +/- 0.3, but safer to leave it where it is

2. This is also fine! The mass values are mostly within the specified tolerance of +/-1.5. In fact, this is the error distribution for a very good MS/MS match from an ion trap.

3. In contrast, this is not right. Although the accuracy is better than the last example, the mass scale should continue to 2500 Da. However, all the potentail matches above 1650 Da have been lost because the tolerance is too tight and is clipping the high masses. The precision suggests that some calibration is overdue

4. This is a worrying example. The accuracy is excellent, but a very wide tolerance has been specified. For a peptide mass fingerprint, this can easily create a false positive, because the distribution of mass values is is not uniform. This kind of data is playing with Mascot's mind. I don't have time to go into great detail. Suffice to say that if you see this, you should set a more appropriate tolerance, like +/- 0.5.

1. Be sparing with variable modifications


· Some modifications are worse than others

- Mods that affect a terminus are less of a problem, e.g. Pyro-glu
- Mods that apply to residue(s) with a high fractional abundance and at any position are BIG problem, e.g. Phospho (ST) = 13%
- Use an error tolerant search to pick up
 uncommon modifications
 - Efficient
 - Also catch non-specific peptides

ASMS 2003

And finally, number 1, our top tip! Be sparing with variable modifications <read from slide>

This search of a single MS/MS spectrum, using one variable mod, gives a nice, statistically significant match.

If the search is repeated with $8 \ \text{mods},$ the match is the same, but it is no longer so clear cut.

All of these mods have effectively increased the size of the database by a factor of $30!\,$

Whats worse, the search takes over 10 times as long!

So, our top tip is to use variable mods sparingly. You'll get better results faster.

- 1. Be sparing with variable modifications
- 2. Use the error graphs to estimate mass tolerances
- 3. Don't specify a protein mass unless essential
- 4. Remember that enzyme specificity also applies to Sequence Queries
- 5. Keep the taxonomy indexes up-to-date
- 6. Peak detection, peak detection, peak detection
- 7. Be skeptical if Mascot score is below threshold
- 8. Submit new modifications to Unimod
- 9. Use the Peptide Summary Report for MS/MS results
- 10. Don't specify a poorly represented taxonomy

ASMS 2003

